On spectral variation of two-parameter matrix eigenvalue problem

被引:1
|
作者
Gil, Michael [1 ]
机构
[1] Ben Gurion Univ Negev, Dept Math, IL-84105 Beer Sheva, Israel
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2015年 / 87卷 / 3-4期
关键词
matrices; two-parameter eigenvalue problem; spectrum perturbation; CONDITION NUMBERS; PENCIL;
D O I
10.5486/PMD.2015.7127
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the two-parameter eigenvalue problem Z(j)v(j) - lambda(1)A(j1)v(j) - lambda(2)A(j2)v(j) = 0, where lambda(j) is an element of C; Z(j), A(jk) (j, k = 1,2) are matrices. Bounds for the variation of the spectrum of that problem under perturbations are suggested.
引用
收藏
页码:269 / 278
页数:10
相关论文
共 50 条
  • [1] ON THE SINGULAR TWO-PARAMETER EIGENVALUE PROBLEM
    Muhic, Andrej
    Plestenjak, Bor
    [J]. ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2009, 18 : 420 - 437
  • [2] On the singular two-parameter eigenvalue problem II
    Kosir, Tomaz
    Plestenjak, Bor
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 649 : 433 - 451
  • [3] On linearizations of the quadratic two-parameter eigenvalue problem
    Hochstenbach, Michiel E.
    Muhic, Andrej
    Plestenjak, Bor
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (08) : 2725 - 2743
  • [4] THE NUMERIC RANGE OF THE TWO-PARAMETER EIGENVALUE PROBLEM
    Mammadov, Eldar Sh.
    [J]. PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON CONTROL AND OPTIMIZATION WITH INDUSTRIAL APPLICATIONS, VOL II, 2018, : 214 - 216
  • [5] On the quadratic two-parameter eigenvalue problem and its linearization
    Muhic, Andrej
    Plestenjak, Bor
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (10) : 2529 - 2542
  • [6] Bounds for the spectrum of a two-parameter eigenvalue problem in a Hilbert space
    Gil, Michael
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2020, 96 (1-2): : 121 - 129
  • [7] A continuation method for a weakly elliptic two-parameter eigenvalue problem
    Plestenjak, B
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2001, 21 (01) : 199 - 216
  • [8] Continuation method for a right definite two-parameter eigenvalue problem
    Plestenjak, B
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (04) : 1163 - 1184
  • [9] A two-parameter eigenvalue problem for a class of block-operator matrices
    Levitin, Michael
    Ozturk, Hasen Mekki
    [J]. DIVERSITY AND BEAUTY OF APPLIED OPERATOR THEORY, 2018, 268 : 367 - 380
  • [10] Completeness Theorems for a Non-Standard Two-Parameter Eigenvalue Problem
    Melvin Faierman
    Manfred Möller
    Bruce A. Watson
    [J]. Integral Equations and Operator Theory, 2008, 60 : 37 - 52