Bounds for the spectrum of a two-parameter eigenvalue problem in a Hilbert space

被引:0
|
作者
Gil, Michael [1 ]
机构
[1] Ben Gurion Univ Negev, Dept Math, POB 653, IL-84105 Beer Sheva, Israel
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2020年 / 96卷 / 1-2期
关键词
Hilbert space; two-parameter eigenvalue problem; compact operators; spectral radius; imaginary parts of eigenvalues; VARIATIONAL APPROACH;
D O I
10.5486/PMD.2020.8629
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the two-parameter eigenvalue problem T(m)v(m) - mu(1)v(m) - mu(2)A(m)v(m) = 0 (m = 1,2), where T-m, A(m) are compact operators in a Hilbert space; mu(1) ,mu(2) is an element of C. Various two-parameter eigenvalue problems for differential equations can be reduced to that problem. Bounds for the spectral radius and imaginary parts of the eigenvalues of the considered problem are suggested. It is shown that the main result of the paper is sharp. An illustrative example is given. Our main tool is the recent norm estimates for the resolvent of a Schatten-von Neumann operator on the tensor product of Hilbert spaces.
引用
收藏
页码:121 / 129
页数:9
相关论文
共 50 条