ROBUST MODEL SELECTION IN GENERALIZED LINEAR MODELS

被引:0
|
作者
Mueller, Samuel [1 ]
Welsh, A. H. [2 ]
机构
[1] Univ Sydney, Sch Math & Stat F07, Sydney, NSW 2006, Australia
[2] Australian Natl Univ, Ctr Math & Applicat, Canberra, ACT 0200, Australia
基金
澳大利亚研究理事会;
关键词
Bootstrap model selection; generalized linear models; paired bootstrap; robust estimation; robust model selection; stratified bootstrap; MONTANE ASH FORESTS; ARBOREAL MARSUPIALS; VARIABLE SELECTION; CENTRAL HIGHLANDS; REGRESSION; CONSERVATION; AUSTRALIA; CRITERION; VICTORIA;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we extend to generalized linear models the robust model selection methodology of Muller and Welsh (2005). As in Muller and Welsh (2005), we combine a robust penalized measure of fit to the sample with a robust measure of out of sample predictive ability that is estimated using a post-stratified m-out-of-n bootstrap. The method can be used to compare different estimators (robust and nonrobust) as well as different models. Specialized to linear models, the present methodology improves on Muller and Welsh (2005): we use a new bias-adjusted bootstrap estimator which avoids the need to include an intercept in every model and we establish an essential monotonicity condition more generally.
引用
收藏
页码:1155 / 1170
页数:16
相关论文
共 50 条
  • [41] Robust Variable Selection in Linear Mixed Models
    Fan, Yali
    Qin, Guoyou
    Zhu, Zhong Yi
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2014, 43 (21) : 4566 - 4581
  • [42] 'Model selection for generalized linear models with factor-augmented predictors' DISCUSSION
    Li, W. K.
    Li, Guodong
    [J]. APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2009, 25 (03) : 237 - 239
  • [43] Regularization and model selection with categorical predictors and effect modifiers in generalized linear models
    Oelker, Margret-Ruth
    Gertheiss, Jan
    Tutz, Gerhard
    [J]. STATISTICAL MODELLING, 2014, 14 (02) : 157 - 177
  • [44] 'Model selection for generalized linear models with factor-augmented predictors' REJOINDER
    Ando, T.
    Tsay, R. S.
    [J]. APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2009, 25 (03) : 243 - 246
  • [45] glmulti: An R Package for Easy Automated Model Selection with (Generalized) Linear Models
    Calcagno, Vincent
    de Mazancourt, Claire
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2010, 34 (12): : 1 - 29
  • [46] A unifying framework for robust association testing, estimation, and genetic model selection using the generalized linear model
    Christina Loley
    Inke R König
    Ludwig Hothorn
    Andreas Ziegler
    [J]. European Journal of Human Genetics, 2013, 21 : 1442 - 1448
  • [47] A unifying framework for robust association testing, estimation, and genetic model selection using the generalized linear model
    Loley, Christina
    Koenig, Inke R.
    Hothorn, Ludwig
    Ziegler, Andreas
    [J]. EUROPEAN JOURNAL OF HUMAN GENETICS, 2013, 21 (12) : 1442 - 1448
  • [48] Robust experimental design for multivariate generalized linear models
    Dror, Hovav A.
    Steinberg, David M.
    [J]. TECHNOMETRICS, 2006, 48 (04) : 520 - 529
  • [49] Robust and efficient estimation of nonparametric generalized linear models
    Kalogridis, Ioannis
    Claeskens, Gerda
    Van Aelst, Stefan
    [J]. TEST, 2023, 32 (03) : 1055 - 1078
  • [50] Robust estimation of generalized linear models with measurement errors
    Li, T
    Hsiao, C
    [J]. JOURNAL OF ECONOMETRICS, 2004, 118 (1-2) : 51 - 65