Probabilistic Forecasting of Real-Time LMP and Network Congestion

被引:60
|
作者
Ji, Yuting [1 ]
Thomas, Robert J. [1 ]
Tong, Lang [1 ]
机构
[1] Cornell Univ, Sch Elect & Comp Engn, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
Congestion forecast; electricity price forecast; locational marginal price (LMP); multiparametric programming; probabilistic forecast; PRICE;
D O I
10.1109/TPWRS.2016.2592380
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The short-term forecasting of real-time locational marginal price (LMP) and network congestion is considered from a system operator perspective. A new probabilistic forecasting technique is proposed based on a multiparametric programming formulation that partitions the uncertainty parameter space into critical regions from which the conditional probability distribution of the real-time LMP/congestion is obtained. The proposed method incorporates load/generation forecast, time varying operation constraints, and contingency models. By shifting the computation associated with multiparametric programs offline, the online computational cost is significantly reduced. An online simulation technique by generating critical regions dynamically is also proposed, which results in several orders of magnitude improvement in the computational cost over standard Monte Carlo methods.
引用
收藏
页码:831 / 841
页数:11
相关论文
共 50 条
  • [1] Probabilistic Forecast of Real-Time LMP via Multiparametric Programming
    Ji, Yuting
    Thomas, Robert J.
    Tong, Lang
    [J]. 2015 48TH HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES (HICSS), 2015, : 2549 - 2556
  • [2] Real-time probabilistic forecasting of flood stages
    Chen, Shien-Tsung
    Yu, Pao-Shan
    [J]. JOURNAL OF HYDROLOGY, 2007, 340 (1-2) : 63 - 77
  • [3] Real-Time Certified Probabilistic Pedestrian Forecasting
    Jacobs, Henry O.
    Hughes, Owen K.
    Johnson-Roberson, Matthew
    Vasudevan, Ram
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2017, 2 (04): : 2064 - 2071
  • [4] Real-Time Probabilistic Tropical Cyclone Forecasting in the Cloud
    Whitcomb, Timothy R.
    Arevalo, Daniel J.
    Moskaitis, Jonathan R.
    Komaromi, William A.
    Doyle, James D.
    Huang, Andrew
    Wodka, Jay
    Noon, Frederick
    May, Margaret M.
    Williamson, Fred
    Reinecke, Patrick A.
    [J]. BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2022, 103 (08) : E1930 - E1946
  • [5] Bayesian bootstrapping in real-time probabilistic photovoltaic power forecasting
    Bozorg, Mokhtar
    Bracale, Antonio
    Carpita, Mauro
    de Falco, Pasquale
    Mottola, Fabio
    Proto, Daniela
    [J]. SOLAR ENERGY, 2021, 225 : 577 - 590
  • [6] Testing probabilistic adaptive real-time flood forecasting models
    Smith, P. J.
    Beven, K. J.
    Leedal, D.
    Weerts, A. H.
    Young, P. C.
    [J]. JOURNAL OF FLOOD RISK MANAGEMENT, 2014, 7 (03): : 265 - 279
  • [7] A methodology for probabilistic real-time forecasting - an urban case study
    Rene, Jeanne-Rose
    Madsen, Henrik
    Mark, Ole
    [J]. JOURNAL OF HYDROINFORMATICS, 2013, 15 (03) : 751 - 762
  • [8] Real-time Traffic Congestion Detection with SIGHTA Regression Network
    Jiang, Long
    Wang, Yatao
    Zhao, Ying
    [J]. PROCEEDINGS OF 2019 IEEE 9TH INTERNATIONAL CONFERENCE ON ELECTRONICS INFORMATION AND EMERGENCY COMMUNICATION (ICEIEC 2019), 2019, : 45 - 50
  • [9] Real-time probabilistic sediment concentration forecasting using integrated dynamic network and error distribution heterogeneity
    Fangzheng Zhao
    Xinyu Wan
    Xiaolin Wang
    Qingyang Wu
    Yan Wu
    [J]. International Journal of Sediment Research, 2022, 37 (06) : 766 - 779
  • [10] Real-time probabilistic sediment concentration forecasting using integrated dynamic network and error distribution heterogeneity
    Zhao, Fangzheng
    Wan, Xinyu
    Wang, Xiaolin
    Wu, Qingyang
    Wu, Yan
    [J]. INTERNATIONAL JOURNAL OF SEDIMENT RESEARCH, 2022, 37 (06) : 766 - 779