Real-Time Certified Probabilistic Pedestrian Forecasting

被引:15
|
作者
Jacobs, Henry O. [1 ]
Hughes, Owen K. [1 ]
Johnson-Roberson, Matthew [1 ]
Vasudevan, Ram [1 ]
机构
[1] Univ Michigan, Ann Arbor, MI 48109 USA
来源
基金
美国国家科学基金会;
关键词
Optimization; optimal control; human detection; tracking; MODELS;
D O I
10.1109/LRA.2017.2719762
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
The success of autonomous systems will depend upon their ability to safely navigate human-centric environments. This motivates the need for a real-time, probabilistic forecasting algorithm for pedestrians, cyclists, and other agents since these predictions will form a necessary step in assessing the risk of any action. This letter presents a novel approach to probabilistic forecasting for pedestrians based on weighted sums of ordinary differential equations that are learned from historical trajectory information within a fixed scene. The resulting algorithm is embarrassingly parallel and is able to work at real-time speeds using a naive Python implementation. The quality of predicted locations of agents generated by the proposed algorithm is validated on a variety of examples and is considerably higher than existing state of the art approaches over long time horizons.
引用
收藏
页码:2064 / 2071
页数:8
相关论文
共 50 条
  • [1] Real-time probabilistic forecasting of flood stages
    Chen, Shien-Tsung
    Yu, Pao-Shan
    [J]. JOURNAL OF HYDROLOGY, 2007, 340 (1-2) : 63 - 77
  • [2] Real-Time Probabilistic Tropical Cyclone Forecasting in the Cloud
    Whitcomb, Timothy R.
    Arevalo, Daniel J.
    Moskaitis, Jonathan R.
    Komaromi, William A.
    Doyle, James D.
    Huang, Andrew
    Wodka, Jay
    Noon, Frederick
    May, Margaret M.
    Williamson, Fred
    Reinecke, Patrick A.
    [J]. BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2022, 103 (08) : E1930 - E1946
  • [3] Probabilistic Forecasting of Real-Time LMP and Network Congestion
    Ji, Yuting
    Thomas, Robert J.
    Tong, Lang
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2017, 32 (02) : 831 - 841
  • [4] Bayesian bootstrapping in real-time probabilistic photovoltaic power forecasting
    Bozorg, Mokhtar
    Bracale, Antonio
    Carpita, Mauro
    de Falco, Pasquale
    Mottola, Fabio
    Proto, Daniela
    [J]. SOLAR ENERGY, 2021, 225 : 577 - 590
  • [5] Testing probabilistic adaptive real-time flood forecasting models
    Smith, P. J.
    Beven, K. J.
    Leedal, D.
    Weerts, A. H.
    Young, P. C.
    [J]. JOURNAL OF FLOOD RISK MANAGEMENT, 2014, 7 (03): : 265 - 279
  • [6] A methodology for probabilistic real-time forecasting - an urban case study
    Rene, Jeanne-Rose
    Madsen, Henrik
    Mark, Ole
    [J]. JOURNAL OF HYDROINFORMATICS, 2013, 15 (03) : 751 - 762
  • [7] Towards real-time probabilistic ash deposition forecasting for New Zealand
    Trancoso R.
    Behr Y.
    Hurst T.
    Deligne N.I.
    [J]. Journal of Applied Volcanology, 11 (1)
  • [8] Real-time squared: A real-time data set for real-time GDP forecasting
    Golinelli, Roberto
    Parigi, Giuseppe
    [J]. INTERNATIONAL JOURNAL OF FORECASTING, 2008, 24 (03) : 368 - 385
  • [9] Sub-minute probabilistic solar forecasting for real-time stochastic simulations
    Yang, Dazhi
    Yagli, Gokhan Mert
    Srinivasan, Dipti
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2022, 153
  • [10] Real-Time Probabilistic Flood Forecasting Using Multiple Machine Learning Methods
    Dinh Ty Nguyen
    Chen, Shien-Tsung
    [J]. WATER, 2020, 12 (03)