Brownian dynamics mean first passage time of two hard disks diffusing in a channel

被引:9
|
作者
Mon, K. K. [1 ,2 ]
机构
[1] Univ Georgia, Dept Phys & Astron, Athens, GA 30602 USA
[2] Univ Georgia, Nanoscale Sci & Engn Ctr, Athens, GA 30602 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2009年 / 130卷 / 18期
基金
美国国家科学基金会;
关键词
Brownian motion; channel flow; diffusion; SINGLE-FILE DIFFUSION; SELF-DIFFUSION; FLUIDS;
D O I
10.1063/1.3127764
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We use Brownian dynamics simulations of two hard disks in a channel to study the mean first passage time to pass each other. The disks have a diameter sigma and are confined in a channel with hard reflective walls. The mean first passage time diverges with an exponent eta as the channel width (2R(p)) approaches that of the nonpassing limit (2 sigma). There are two different theoretical predictions for the exponent eta of the two disk hopping time divergences. Transition state theory and a Fick-Jacobs type of dimensional reduction approach predict exponents of 2 and 32, respectively. Previous Brownian dynamics simulations results have a range of effective exponents and are inconclusive. Here, we present extensive Brownian dynamics simulations results which are consistent with the predictions of transition state theory. The new data show that one must be close to the nonpassing limit to observe the asymptotic scaling exponent. The scaling dependence crosses over from the bulk limit to the nonpassing limit as the width of the channel narrows, corresponding to a range of effective exponents between 0 and 2. This crossover provides an explanation of the inconclusive results reported in previous Brownian dynamics simulations.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Ring structures and mean first passage time in networks
    Baronchelli, A
    Loreto, V
    [J]. PHYSICAL REVIEW E, 2006, 73 (02)
  • [42] Comment on "Mean first passage time for anomalous diffusion"
    Yuste, SB
    Lindenberg, K
    [J]. PHYSICAL REVIEW E, 2004, 69 (03) : 033101 - 1
  • [43] Estimating the mean first passage time of protein misfolding
    Singh, Vishal
    Biswas, Parbati
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (08) : 5692 - 5698
  • [44] Mean first-passage time for a stochastic tumor growth model with two different time delays
    Yu, Qin
    Guo, Yong-Feng
    Chen, Hao-Yu
    [J]. INDIAN JOURNAL OF PHYSICS, 2024,
  • [45] A mean first passage time genome rearrangement distance
    Francis, Andrew R.
    Wynn, Henry P.
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 2020, 80 (06) : 1971 - 1992
  • [46] Mean first passage time for a Markovian jumping process
    Kaminska, A.
    Srokowski, T.
    [J]. ACTA PHYSICA POLONICA B, 2007, 38 (10): : 3119 - 3131
  • [47] Levy-Brownian motion on finite intervals:: Mean first passage time analysis -: art. no. 046104
    Dybiec, B
    Gudowska-Nowak, E
    Hänggi, P
    [J]. PHYSICAL REVIEW E, 2006, 73 (04):
  • [48] Residual mean first-passage time for jump processes: theory and applications to Levy flights and fractional Brownian motion
    Tejedor, V.
    Benichou, O.
    Metzler, Ralf
    Voituriez, R.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (25)
  • [49] Diffusion dynamics and first passage time in a two-coupled pendulum system
    Sakthivel, G.
    Rajasekar, S.
    [J]. CHAOS, 2010, 20 (03)
  • [50] FIRST-PASSAGE TIMES OF TWO-DIMENSIONAL BROWNIAN MOTION
    Kou, Steven
    Zhong, Haowen
    [J]. ADVANCES IN APPLIED PROBABILITY, 2016, 48 (04) : 1045 - 1060