Effects of fluoroquinolones on HERG channels and on pancreatic β-cell ATP-sensitive K+ channels

被引:23
|
作者
Zuenkler, Bemd J.
Claassen, Sonja
Wos-Maganga, Maria
Rustenbeck, Ingo
Holzgrabe, Ulrike
机构
[1] Fed Inst Drugs & Med Devices, D-53175 Bonn, Germany
[2] Tech Univ Carolo Wilhelmina Braunschweig, Inst Pharmacol & Toxicol, D-38106 Braunschweig, Germany
[3] Univ Wurzburg, Inst Pharm & Food Chem, D-97074 Wurzburg, Germany
关键词
uoroquinol ones; HERG channel; KATp channel; pore-forming Kir6.2 subunit;
D O I
10.1016/j.tox.2006.09.002
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
An inhibition of the cardiac rapid delayed rectifier K+ current (I-Kr) and of the ATP-sensitive K+ (K-ATP) current seems to be involved in the mechanisms of the cardiotoxic effects and the alterations in glucose homeostasis, respectively, induced by some fluoroquinolones. The aim of the present study was to compare the effects of fluoroquinolone derivatives on the pore-forming subunit of the cardiac I-Kr which is encoded by human ether-a-go-go-related gene (HERG), and on the ATP-sensitive K+ (K-ATP) channel from the clonal insulinoma cell line RINm5F Sparfloxacin blocked HERG currents half-maximally (IC50 value) at a concentration of 33.2 mu M, whereas norfloxacin and lomefloxacin each tested at a concentration of 300 mu M inhibited HERG currents only by 2.8 +/- 3.6% and 12.3 +/- 4.7%, respectively. Four newly synthesized fluoroquinolone derivatives with either a p-fluoro-phenyl (compound C3) or an o-fluoro-phenyl (compound C4) substituent at position N-1 and an additional dimethylated piperazine ring (compounds C1 and C2) inhibited HERG currents by 7.3-14.7% at test concentrations of 100 mu M. The rank order of potency for the inhibition of KATp currents was C2 > C1, C4, sparfloxacin > C3. In conclusion, the structural requirements for fluoroquinolones to inhibit I-Kr currents and K-ATP currents appear to differ. The amino group at position C-5 seems to be primarily responsible for the strong HERG current blocking property of sparfloxacin. In contrast, for the block of pancreatic P-cell KATp currents by fluoroquinolones the substituents at positions N-1, C-7 and C-8 all might play a role. (c) 2006 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:239 / 248
页数:10
相关论文
共 50 条
  • [21] ATP-sensitive K+ channels in pancreatic, cardiac, and vascular smooth muscle cells
    Yokoshiki, H
    Sunagawa, M
    Seki, T
    Sperelakis, N
    AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 1998, 274 (01): : C25 - C37
  • [22] ATP-SENSITIVE K+ CHANNELS IN HUMAN ISOLATED PANCREATIC B-CELLS
    ASHCROFT, FM
    KAKEI, M
    KELLY, RP
    SUTTON, R
    FEBS LETTERS, 1987, 215 (01) : 9 - 12
  • [23] Phosphotransfer reactions in the regulation of ATP-sensitive K+ channels
    Dzeja, PP
    Terzic, A
    FASEB JOURNAL, 1998, 12 (07): : 523 - 529
  • [24] Diadenosine tetraphosphate-gating of recombinant pancreatic ATP-sensitive K+ channels
    Jovanovic, S
    Jovanovic, A
    BIOSCIENCE REPORTS, 2001, 21 (01) : 93 - 99
  • [25] DISOPYRAMIDE BLOCKS PANCREATIC ATP-SENSITIVE K+ CHANNELS AND ENHANCES INSULIN RELEASE
    HAYASHI, S
    HORIE, M
    TSUURA, Y
    ISHIDA, H
    OKADA, Y
    SEINO, Y
    SASAYAMA, S
    AMERICAN JOURNAL OF PHYSIOLOGY, 1993, 265 (02): : C337 - C342
  • [26] Correlating structure and function in ATP-sensitive K+ channels
    Ashcroft, FM
    Gribble, FM
    TRENDS IN NEUROSCIENCES, 1998, 21 (07) : 288 - 294
  • [27] Physiological and pathophysiological roles of ATP-sensitive K+ channels
    Seino, S
    Miki, T
    PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 2003, 81 (02): : 133 - 176
  • [28] CHARACTERISTICS OF ATP-SENSITIVE K+ CHANNELS IN HYPERTROPHIED CELLS - EFFECTS OF PH
    KIMURA, S
    BASSETT, AL
    XI, HY
    TOMITA, F
    MYERBURG, RJ
    CIRCULATION, 1992, 86 (04) : 92 - 92
  • [29] Inhibitory effects of berberine on ATP-sensitive K+ channels in cardiac myocytes
    Wang, YX
    Zheng, YM
    Zhou, XB
    EUROPEAN JOURNAL OF PHARMACOLOGY, 1996, 316 (2-3) : 307 - 315
  • [30] EFFECTS OF INTRACELLULAR PH ON ATP-SENSITIVE K+ CHANNELS IN MOUSE PANCREATIC BETA-CELLS
    PROKS, P
    TAKANO, M
    ASHCROFT, FM
    JOURNAL OF PHYSIOLOGY-LONDON, 1994, 475 (01): : 33 - 44