Black phosphorus quantum dot-based field-effect transistors with ambipolar characteristics

被引:16
|
作者
Seo, Soonjoo [1 ]
Park, Byoungnam [2 ]
Kim, Youngjun [2 ]
Lee, Hyun Uk [1 ]
Kim, Hyeran [1 ]
Lee, Seung Youb [1 ]
Kim, Yooseok [1 ]
Won, Jonghan [1 ]
Kim, Youn Jung [3 ]
Lee, Jouhahn [1 ]
机构
[1] KBSI, Adv Nanosurface Res Grp, Daejeon 34133, South Korea
[2] Hongik Univ, Dept Mat Sci & Engn, Seoul 04066, South Korea
[3] Andong Natl Univ, Ctr Res Facil, Andong 36729, South Korea
基金
新加坡国家研究基金会;
关键词
Black phosphorus; Field-effect transistors; Ambipolar characteristics; SEMICONDUCTOR;
D O I
10.1016/j.apsusc.2018.04.158
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Semiconductor quantum dots have intriguing electronic and optical properties distinguished from bulk owing to quantum confinement effects. Among the two-dimensional materials, black phosphorus (BP) has generated enormous excitement due to its tunable direct band gap and high p-type semiconducting properties. We prepared BP quantum dots (BPQDs) by simple liquid exfoliation using distilled water and ethanol solution. Our structural data show the uniform distribution of circular BPQDs with the average lateral size of 4.08 +/- 0.66 nm and the height of 1.13 +/- 0.32 nm. We fabricated BPQD field-effect transistors (FETs) to investigate the electrical characteristics of BPQD-based devices and found that both hole and electron transport can be probed in the BPQD FETs. The BPQD FETs exhibited unprecedentedly ambipolar behavior with the mobility of 0.11 cm(2) V-1 s(1) for p type and 0.09 cm(2) V-1 s(1) for n type at 300 K. Our results provide the simple preparation methods to fabricate ambipolar BPQD FETs with the comparable hole and electron transport for large-area applications in solar cells and optoelectronic devices. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:576 / 582
页数:7
相关论文
共 50 条
  • [41] Ambipolar organic field-effect transistors on unconventional substrates
    P. Cosseddu
    G. Mattana
    E. Orgiu
    A. Bonfiglio
    Applied Physics A, 2009, 95 : 49 - 54
  • [42] The study of ambipolar behavior in phosphorene field-effect transistors
    Guo, Cheng
    Wang, Lin
    Xing, Huaizhong
    Chen, Xiaoshuang
    JOURNAL OF APPLIED PHYSICS, 2016, 120 (21)
  • [43] Passivated ambipolar black phosphorus transistors
    Yue, Dewu
    Lee, Daeyeong
    Jang, Young Dae
    Choi, Min Sup
    Nam, Hye Jin
    Jung, Duk-Young
    Yoo, Won Jong
    NANOSCALE, 2016, 8 (25) : 12773 - 12779
  • [44] Ambipolar to Unipolar Conversion in Graphene Field-Effect Transistors
    Li, Hong
    Zhang, Qing
    Liu, Chao
    Xu, Shouheng
    Gao, Pingqi
    ACS NANO, 2011, 5 (04) : 3198 - 3203
  • [45] Ambipolar organic field-effect transistors on unconventional substrates
    Cosseddu, P.
    Mattana, G.
    Orgiu, E.
    Bonfiglio, A.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2009, 95 (01): : 49 - 54
  • [46] Unipolar to ambipolar conversion in graphene field-effect transistors
    Feng, Tingting
    Xie, Dan
    Lin, Yuxuan
    Tian, He
    Zhao, Haiming
    Ren, Tianling
    Zhu, Hongwei
    APPLIED PHYSICS LETTERS, 2012, 101 (25)
  • [47] Ambipolar and Unipolar PbSe Nanowire Field-Effect Transistors
    Kim, David K.
    Vemulkar, Tarun R.
    Oh, Soong Ju
    Koh, Weon-Kyu
    Murray, Christopher B.
    Kagan, Cherie R.
    ACS NANO, 2011, 5 (04) : 3230 - 3236
  • [48] Black Phosphorus Field-Effect Transistors with Work Function Tunable Contacts
    Ma, Yuqiang
    Shen, Chenfei
    Zhang, Anyi
    Chen, Liang
    Liu, Yihang
    Chen, Jihan
    Liu, Qingzhou
    Li, Zhen
    Amer, Moh. R.
    Nilges, Tom
    Abbas, Ahmad N.
    Zhou, Chongwu
    ACS NANO, 2017, 11 (07) : 7126 - 7133
  • [49] Carrier thermoelectric transport model for black phosphorus field-effect transistors
    Lu, Nianduan
    Wei, Wei
    Chuai, Xichen
    Li, Ling
    Liu, Ming
    CHEMICAL PHYSICS LETTERS, 2017, 678 : 271 - 274
  • [50] Performance Enhancement of Black Phosphorus Field-Effect Transistors by Chemical Doping
    Du, Yuchen
    Yang, Lingming
    Zhou, Hong
    Ye, Peide D.
    IEEE ELECTRON DEVICE LETTERS, 2016, 37 (04) : 429 - 432