Extending Sliding-Window Semantics over Data Streams

被引:4
|
作者
Chen, Leisong [1 ]
Lin, Guoping [2 ]
机构
[1] Zhangzhou Normal Univ, Dept Commun & Journalism, Zhangzhou, Peoples R China
[2] Zhangzhou Normal Univ, Dept Math & Informat Sci, Zhangzhou, Peoples R China
关键词
data stream; continuous query; sliding window; semantic;
D O I
10.1109/ISCSCT.2008.187
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Data stream processing is now commonplace in applications such as network monitoring, sensor networks, telecommunications data management, web personalization, manufacturing and others. The continuous sliding-window query model is used widely in data stream management systems. However, the existing sliding window query models fail to answer some of the queries that qualify a certain condition. In this paper, we extended the existing sliding-window to general scenarios by adding a new class of sliding window operator, termed condition-based sliding window. The condition can be defined over any attribute of data stream tuple in an out of order manner. We discuss the semantics of the operator and show that above method performs well for queries that qualify a certain condition.
引用
收藏
页码:110 / +
页数:2
相关论文
共 50 条
  • [11] O(1)-Time Complexity for Fixed Sliding-Window Aggregation Over Out-of-Order Data Streams
    Bou, Savong
    Amagasa, Toshiyuki
    Kitagawa, Hiroyuki
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (11) : 6745 - 6757
  • [12] Sliding-Window Based Method to Discover High Utility Patterns from Data Streams
    Manike, Chiranjeevi
    Om, Hari
    COMPUTATIONAL INTELLIGENCE IN DATA MINING, VOL 3, 2015, 33
  • [13] Harnessing sliding-window execution semantics for parallel stream processing
    Mencagli, Gabriele
    Torquati, Massimo
    Lucattini, Fabio
    Cuomo, Salvatore
    Aldinucci, Marco
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2018, 116 : 74 - 88
  • [14] Exploiting predicate-window semantics over data streams
    Ghanem, TM
    Aref, WG
    Elmagarmid, AK
    SIGMOD RECORD, 2006, 35 (01) : 3 - 8
  • [15] CPiX: Real-Time Analytics Over Out-of-Order Data Streams by Incremental Sliding-Window Aggregation
    Bou, Savong
    Kitagawa, Hiroyuki
    Amagasa, Toshiyuki
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (11) : 5239 - 5250
  • [16] Sliding-window top-k queries on uncertain streams
    Jin, Cheqing
    Yi, Ke
    Chen, Lei
    Yu, Jeffrey Xu
    Lin, Xuemin
    VLDB JOURNAL, 2010, 19 (03): : 411 - 435
  • [17] L-BiX: incremental sliding-window aggregation over data streams using linear bidirectional aggregating indexes
    Bou, Savong
    Kitagawa, Hiroyuki
    Amagasa, Toshiyuki
    KNOWLEDGE AND INFORMATION SYSTEMS, 2020, 62 (08) : 3107 - 3131
  • [18] Sliding-window top-k queries on uncertain streams
    Cheqing Jin
    Ke Yi
    Lei Chen
    Jeffrey Xu Yu
    Xuemin Lin
    The VLDB Journal, 2010, 19 : 411 - 435
  • [19] Sliding-Window Top-k Queries on Uncertain Streams
    Jin, Cheqing
    Yi, Ke
    Chen, Lei
    Yu, Jeffrey Xu
    Lin, Xuemin
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2008, 1 (01): : 301 - 312
  • [20] L-BiX: incremental sliding-window aggregation over data streams using linear bidirectional aggregating indexes
    Savong Bou
    Hiroyuki Kitagawa
    Toshiyuki Amagasa
    Knowledge and Information Systems, 2020, 62 : 3107 - 3131