MIRROR SYMMETRY AND THE CLASSIFICATION OF ORBIFOLD DEL PEZZO SURFACES

被引:37
|
作者
Akhtar, Mohammad [1 ]
Coates, Tom [1 ]
Corti, Alessio [1 ]
Heuberger, Liana [2 ]
Kasprzyk, Alexander [1 ]
Oneto, Alessandro [3 ]
Petracci, Andrea [1 ]
Prince, Thomas [1 ]
Tveiten, Ketil [3 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, 180 Queens Gate, London SW7 2AZ, England
[2] Inst Math Jussieu, F-75005 Paris, France
[3] Stockholm Univ, Dept Math, SE-10691 Stockholm, Sweden
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
TORUS ACTIONS; SINGULARITIES; DEFORMATIONS; VARIETIES; GEOMETRY;
D O I
10.1090/proc/12876
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We state a number of conjectures that together allow one to classify a broad class of del Pezzo surfaces with cyclic quotient singularities using mirror symmetry. We prove our conjectures in the simplest cases. The conjectures relate mutation-equivalence classes of Fano polygons with Q-Gorenstein deformation classes of del Pezzo surfaces.
引用
收藏
页码:513 / 527
页数:15
相关论文
共 50 条