Homological mirror symmetry for toric orbifolds of toric del Pezzo surfaces

被引:11
|
作者
Ueda, Kazushi [1 ]
Yamazaki, Masahito [2 ]
机构
[1] Osaka Univ, Grad Sch Sci, Dept Math, Toyonaka, Osaka 5600043, Japan
[2] Univ Tokyo, Grad Sch Sci, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan
关键词
DIMER MODELS; VANISHING CYCLES;
D O I
10.1515/crelle.2012.031
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We formulate a conjecture which describes the Fukaya category of an exact Lefschetz fibration defined by a Laurent polynomial in two variables in terms of a pair consisting of a consistent dimer model and a perfect matching on it. We prove this conjecture in some cases, and obtain homological mirror symmetry for quotient stacks of toric del Pezzo surfaces by finite subgroups of the torus as a corollary.
引用
收藏
页码:1 / 22
页数:22
相关论文
共 50 条
  • [1] Homological mirror symmetry for toric del Pezzo surfaces
    Ueda, K
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 264 (01) : 71 - 85
  • [2] Homological Mirror Symmetry for Toric del Pezzo Surfaces
    Kazushi Ueda
    Communications in Mathematical Physics, 2006, 264 : 71 - 85
  • [3] On exceptional collections of line bundles and mirror symmetry for toric Del-Pezzo surfaces
    Jerby, Yochay
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (03)
  • [4] SEMICASCADES OF TORIC LOG DEL PEZZO SURFACES
    Hwang, Dongseon
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2022, 59 (01) : 179 - 190
  • [5] Homological mirror symmetry of toric Fano surfaces via Morse homotopy
    Nakanishi, Hayato
    JOURNAL OF MATHEMATICAL PHYSICS, 2024, 65 (05)
  • [6] A boundedness result for toric log Del Pezzo surfaces
    Dimitrios I. Dais
    Benjamin Nill
    Archiv der Mathematik, 2008, 91 : 526 - 535
  • [7] Asymptotic Chow stability of toric Del Pezzo surfaces
    Lee, King-Leung
    Li, Zhiyuan
    Sturm, Jacob
    Wang, Xiaowei
    MATHEMATICAL RESEARCH LETTERS, 2019, 26 (06) : 1759 - 1787
  • [8] A boundedness result for toric log Del Pezzo surfaces
    Dais, Dimitrios I.
    Nill, Benjamin
    ARCHIV DER MATHEMATIK, 2008, 91 (06) : 526 - 535
  • [9] Toric log del Pezzo surfaces with one singularity
    Dais, Dimitrios I.
    ADVANCES IN GEOMETRY, 2020, 20 (01) : 121 - 138
  • [10] On the combinatorial classification of toric log del Pezzo surfaces
    Kasprzyk, Alexander M.
    Kreuzer, Maximilian
    Nill, Benjamin
    LMS JOURNAL OF COMPUTATION AND MATHEMATICS, 2010, 13 : 33 - 46