Homological mirror symmetry for toric orbifolds of toric del Pezzo surfaces

被引:11
|
作者
Ueda, Kazushi [1 ]
Yamazaki, Masahito [2 ]
机构
[1] Osaka Univ, Grad Sch Sci, Dept Math, Toyonaka, Osaka 5600043, Japan
[2] Univ Tokyo, Grad Sch Sci, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan
关键词
DIMER MODELS; VANISHING CYCLES;
D O I
10.1515/crelle.2012.031
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We formulate a conjecture which describes the Fukaya category of an exact Lefschetz fibration defined by a Laurent polynomial in two variables in terms of a pair consisting of a consistent dimer model and a perfect matching on it. We prove this conjecture in some cases, and obtain homological mirror symmetry for quotient stacks of toric del Pezzo surfaces by finite subgroups of the torus as a corollary.
引用
收藏
页码:1 / 22
页数:22
相关论文
共 50 条
  • [31] Toric systems and mirror symmetry
    Bocklandt, Raf
    COMPOSITIO MATHEMATICA, 2013, 149 (11) : 1839 - 1855
  • [32] SYZ mirror symmetry for del Pezzo surfaces and affine structures
    Lau, Siu-Cheong
    Lee, Tsung-Ju
    Lin, Yu-Shen
    ADVANCES IN MATHEMATICS, 2024, 439
  • [33] SYZ MIRROR SYMMETRY FOR DEL PEZZO SURFACES AND AFFINE STRUCTURES
    Lau, Siu-Cheong
    Lee, Tsung-Ju
    Lin, Yu-Shen
    arXiv, 2022,
  • [34] All genus mirror symmetry for toric Calabi-Yau 3-orbifolds
    Fang, Bohan
    Liu, Chiu-Chu Melissa
    Zong, Zhengyu
    STRING-MATH 2014, 2016, 93 : 1 - +
  • [35] A Caporaso-Harris type formula for Welschinger invariants of real toric Del Pezzo surfaces
    Itenberg, Ilia
    Kharlamov, Viatcheslav
    Shustin, Eugenii
    COMMENTARII MATHEMATICI HELVETICI, 2009, 84 (01) : 87 - 126
  • [36] CLASSIFICATION OF GORENSTEIN TORIC DEL PEZZO VARIETIES IN ARBITRARY DIMENSION
    Batyrev, Victor
    Juny, Dorothee
    MOSCOW MATHEMATICAL JOURNAL, 2010, 10 (02) : 285 - 316
  • [37] Classification of Toric log Del Pezzo Surfaces having Picard Number 1 and Index ≤ 3
    Dimitrios I. Dais
    Results in Mathematics, 2009, 54 : 219 - 252
  • [38] Mirror symmetry for Del Pezzo surfaces: Vanishing cycles and coherent sheaves
    Auroux, Denis
    Katzarkov, Ludmil
    Orlov, Dmitri
    INVENTIONES MATHEMATICAE, 2006, 166 (03) : 537 - 582
  • [39] Mirror symmetry for Del Pezzo surfaces: Vanishing cycles and coherent sheaves
    Denis Auroux
    Ludmil Katzarkov
    Dmitri Orlov
    Inventiones mathematicae, 2006, 166 : 537 - 582
  • [40] Classification of Toric log Del Pezzo Surfaces having Picard Number 1 and Index ≤ 3
    Dais, Dimitrios I.
    RESULTS IN MATHEMATICS, 2009, 54 (3-4) : 219 - 252