Two-dimensional range successor in optimal time and almost linear space

被引:4
|
作者
Zhou, Gelin [1 ]
机构
[1] Univ Waterloo, David R Cheriton Sch Comp Sci, Waterloo, ON N2L 3G1, Canada
关键词
Data structures; Computational geometry; Range successor; Sorted range reporting; Planar orthogonal skyline reporting; QUERIES;
D O I
10.1016/j.ipl.2015.09.002
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, we revisit the problem of supporting two-dimensional range successor queries. We present a data structure with O (n lglg n) words of space and O(lglgn) query time. This improves the work of Nekrich and Navarro (2012) by a factor of lg lgn in query time, or a factor of lg(is an element of) in space cost, where E is an arbitrary positive constant. Our data structure matches the state of the art for two-dimensional range emptiness queries and achieves the optimal query time. This structure has fruitful applications in computational geometry and text indexing. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:171 / 174
页数:4
相关论文
共 50 条
  • [11] A linear-quadratic optimal regulator for two-dimensional systems
    Jagannathan, M
    Syrmos, VL
    [J]. PROCEEDINGS OF THE 35TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1996, : 4172 - 4177
  • [12] Optimal entropic uncertainty relation in two-dimensional Hilbert space
    Sanches-Ruiz, J
    [J]. PHYSICS LETTERS A, 1998, 244 (04) : 189 - 195
  • [13] TWO-DIMENSIONAL, ALMOST PERIODIC LINEAR-SYSTEMS WITH PROXIMAL AND RECURRENT BEHAVIOR
    JOHNSON, RA
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 82 (03) : 417 - 422
  • [14] ON A FLOQUET THEORY FOR ALMOST-PERIODIC, TWO-DIMENSIONAL LINEAR-SYSTEMS
    JOHNSON, RA
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1980, 37 (02) : 184 - 205
  • [15] Optimal placement of sampling locations for identification of a two-dimensional space
    Yoshida, Ikumasa
    Tasaki, Yosuke
    Tomizawa, Yukihisa
    [J]. GEORISK-ASSESSMENT AND MANAGEMENT OF RISK FOR ENGINEERED SYSTEMS AND GEOHAZARDS, 2022, 16 (01) : 98 - 113
  • [16] An optimal entropic uncertainty relation in a two-dimensional Hilbert space
    Ghirardi, G
    Marinatto, L
    Romano, R
    [J]. PHYSICS LETTERS A, 2003, 317 (1-2) : 32 - 36
  • [17] Optimal scanning control of flexible structures in two-dimensional space
    Sadek, Ibrahim
    Abdul-Hamid, Husein
    Scott, Julie
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 233 (02) : 389 - 404
  • [18] Chaotification of a two-dimensional continuous time linear systems
    Huang Wei
    Zhang Hua-guang
    [J]. Proceedings of 2004 Chinese Control and Decision Conference, 2004, : 4 - 6
  • [19] Visualising Rough Time Intervals in a Two-Dimensional Space
    Qiang, Yi
    Asmussen, Katrin
    Delafontaine, Matthias
    Stichelbaut, Birger
    De Tre, Guy
    De Maeyer, Philippe
    Van de Weghe, Nico
    [J]. PROCEEDINGS OF THE JOINT 2009 INTERNATIONAL FUZZY SYSTEMS ASSOCIATION WORLD CONGRESS AND 2009 EUROPEAN SOCIETY OF FUZZY LOGIC AND TECHNOLOGY CONFERENCE, 2009, : 1480 - 1485
  • [20] Interactive analysis of time intervals in a two-dimensional space
    Qiang, Yi
    Delafontaine, Matthias
    Versichele, Mathias
    De Maeyer, Philippe
    Van de Weghe, Nico
    [J]. INFORMATION VISUALIZATION, 2012, 11 (04) : 255 - 272