Towards Parameter Estimation in Wildfire Spread Simulation Based on Sequential Monte Carlo Methods

被引:0
|
作者
Bai, Fan [1 ]
Guo, Song [1 ]
Hu, Xiaolin [1 ]
机构
[1] Georgia State Univ, Dept Comp Sci, 34 Peachtree St,Suite 1407, Atlanta, GA 30303 USA
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Simulation models rely on many parameters to model the structure and behavior of systems under study. To achieve accurate simulation results, there is a need to develop methods to dynamically estimate the correct set of model parameters for a given simulation scenario. In this paper, we present a method to dynamically estimate model parameters by assimilating real time data using Sequential Monte Carlo (SMC) methods. We formulate the problem of single and multiple parameter estimations based on the context of wildfire spread simulation. Preliminary results show that the developed method can be applied to parameter estimation in wildfire spread simulation to produce more accurate simulation results. The complexity and difficulties in multiple parameter estimation are discussed as well.
引用
收藏
页码:159 / 166
页数:8
相关论文
共 50 条
  • [1] Data Assimilation Using Sequential Monte Carlo Methods in Wildfire Spread Simulation
    Xue, Haidong
    Gu, Feng
    Hu, Xiaolin
    [J]. ACM TRANSACTIONS ON MODELING AND COMPUTER SIMULATION, 2012, 22 (04):
  • [2] ANALYSIS AND QUANTIFICATION OF DATA ASSIMILATION BASED ON SEQUENTIAL MONTE CARLO METHODS FOR WILDFIRE SPREAD SIMULATION
    Gu, Feng
    Hu, Xiaolin
    [J]. INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING, 2010, 1 (04) : 445 - 468
  • [3] Sequential Monte Carlo Smoothing with Parameter Estimation
    Yang, Biao
    Stroud, Jonathan R.
    Huerta, Gabriel
    [J]. BAYESIAN ANALYSIS, 2018, 13 (04): : 1133 - 1157
  • [4] Sequential Monte Carlo methods for static parameter estimation in random set models
    Vo, BN
    Vo, BT
    Singh, S
    [J]. PROCEEDINGS OF THE 2004 INTELLIGENT SENSORS, SENSOR NETWORKS & INFORMATION PROCESSING CONFERENCE, 2004, : 313 - 318
  • [5] Sequential Monte Carlo Methods for State and Parameter Estimation in Abruptly Changing Environments
    Nemeth, Christopher
    Fearnhead, Paul
    Mihaylova, Lyudmila
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (05) : 1245 - 1255
  • [6] A survey of Monte Carlo methods for parameter estimation
    David Luengo
    Luca Martino
    Mónica Bugallo
    Víctor Elvira
    Simo Särkkä
    [J]. EURASIP Journal on Advances in Signal Processing, 2020
  • [7] A survey of Monte Carlo methods for parameter estimation
    Luengo, David
    Martino, Luca
    Bugallo, Monica
    Elvira, Victor
    Sarkka, Simo
    [J]. EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2020, 2020 (01)
  • [8] Sequential Monte Carlo methods for parameter estimation in nonlinear state-space models
    Gao, Meng
    Zhang, Hui
    [J]. COMPUTERS & GEOSCIENCES, 2012, 44 : 70 - 77
  • [9] AN EFFECTIVE PROPOSAL DISTRIBUTION FOR SEQUENTIAL MONTE CARLO METHODS-BASED WILDFIRE DATA ASSIMILATION
    Xue, Haidong
    Hu, Xiaolin
    [J]. 2013 WINTER SIMULATION CONFERENCE (WSC), 2013, : 1938 - 1949
  • [10] Estimation of agent-based models using sequential Monte Carlo methods
    Lux, Thomas
    [J]. JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2018, 91 : 391 - 408