Sequential Monte Carlo methods for static parameter estimation in random set models

被引:7
|
作者
Vo, BN [1 ]
Vo, BT [1 ]
Singh, S [1 ]
机构
[1] Univ Melbourne, Dept Elect & Elect Engn, Melbourne, Vic 3010, Australia
关键词
Bayesian inferencing; Monte Carlo; point processes; random sets; sequential Monte Carlo; particle methods; large data sets;
D O I
10.1109/ISSNIP.2004.1417481
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Bayesian inferencing for applications where the dimension of the parameter is also unknown requires modeling the parameter as a (ordered or unordered) random finite set. In most practical estimation problems, Monte Carlo methods is the standard tool. In particular, trans-dimensional Markov Chain Monte Carlo (MCMC) method has been used to simulate from the posterior density of random finite set. However the MCMC approach involves accessing the entire sequence of data for each iteration, and becomes computationally infeasible for massive data sets. This paper presents two Sequential Monte Carlo strategies to reduce the number full accesses to the data. The first combines sequential importance sampling with MCMC to sequentially sample from the posterior. The second introduces artificial dynamics in the parameter to cast the problem as a Bayesian filtering problem so that particle techniques can be applied.
引用
收藏
页码:313 / 318
页数:6
相关论文
共 50 条
  • [1] Sequential Monte Carlo methods for parameter estimation in nonlinear state-space models
    Gao, Meng
    Zhang, Hui
    [J]. COMPUTERS & GEOSCIENCES, 2012, 44 : 70 - 77
  • [2] Sequential Monte Carlo Smoothing with Parameter Estimation
    Yang, Biao
    Stroud, Jonathan R.
    Huerta, Gabriel
    [J]. BAYESIAN ANALYSIS, 2018, 13 (04): : 1133 - 1157
  • [3] Sequential Monte Carlo Methods in Random Intercept Models for Longitudinal Data
    Alvares, Danilo
    Armero, Carmen
    Forte, Anabel
    Chopin, Nicolas
    [J]. BAYESIAN STATISTICS IN ACTION, BAYSM 2016, 2017, 194 : 3 - 9
  • [4] Sequential Monte Carlo Methods for State and Parameter Estimation in Abruptly Changing Environments
    Nemeth, Christopher
    Fearnhead, Paul
    Mihaylova, Lyudmila
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (05) : 1245 - 1255
  • [5] Subsampling sequential Monte Carlo for static Bayesian models
    Gunawan, David
    Dang, Khue-Dung
    Quiroz, Matias
    Kohn, Robert
    Tran, Minh-Ngoc
    [J]. STATISTICS AND COMPUTING, 2020, 30 (06) : 1741 - 1758
  • [6] Subsampling sequential Monte Carlo for static Bayesian models
    David Gunawan
    Khue-Dung Dang
    Matias Quiroz
    Robert Kohn
    Minh-Ngoc Tran
    [J]. Statistics and Computing, 2020, 30 : 1741 - 1758
  • [7] A survey of Monte Carlo methods for parameter estimation
    David Luengo
    Luca Martino
    Mónica Bugallo
    Víctor Elvira
    Simo Särkkä
    [J]. EURASIP Journal on Advances in Signal Processing, 2020
  • [8] A survey of Monte Carlo methods for parameter estimation
    Luengo, David
    Martino, Luca
    Bugallo, Monica
    Elvira, Victor
    Sarkka, Simo
    [J]. EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2020, 2020 (01)
  • [9] Towards Parameter Estimation in Wildfire Spread Simulation Based on Sequential Monte Carlo Methods
    Bai, Fan
    Guo, Song
    Hu, Xiaolin
    [J]. 44TH ANNUAL SIMULATION SYMPOSIUM 2011 (ANSS 2011) - 2011 SPRING SIMULATION MULTICONFERENCE - BK 2 OF 8, 2011, : 159 - 166
  • [10] Estimation of agent-based models using sequential Monte Carlo methods
    Lux, Thomas
    [J]. JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2018, 91 : 391 - 408