Stroke segmentation of Chinese characters using Markov random fields

被引:0
|
作者
Zeng, Jia [1 ]
Liu, Zhi-Qiang [1 ]
机构
[1] City Univ Hong Kong, Sch Creat Media, Hong Kong, Hong Kong, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents Markov random fields (MRFs) to segment strokes of Chinese characters. The distortions caused by the thinning process make the thinning-based stroke segmentation difficult to extract continuous strokes and handle the ambiguous intersection regions. The MRFs reflect the local statistical dependencies at neighboring sites of the stroke skeleton, where the likelihood clique potential describes the statistical variations of directional observations at each site, and the smoothness prior clique potential describes the interactions among observations at neighboring sites. Based on the cyclic directional observations by Gabor filters, we formulate the stroke segmentation as an optimal labeling problem by the maximum a posteriori (MAP) criterion. The results of stroke segmentation on the ETL-9B character database are encouraging.
引用
收藏
页码:868 / +
页数:2
相关论文
共 50 条
  • [1] Cascade Markov random fields for stroke extraction of Chinese characters
    Zeng, Jia
    Feng, Wei
    Xie, Lei
    Liu, Zhi-Qiang
    [J]. INFORMATION SCIENCES, 2010, 180 (02) : 301 - 311
  • [2] Leukocytes Segmentation Using Markov Random Fields
    Reta, C.
    Altamirano, L.
    Gonzalez, J. A.
    Diaz, R.
    Guichard, J. S.
    [J]. SOFTWARE TOOLS AND ALGORITHMS FOR BIOLOGICAL SYSTEMS, 2011, 696 : 345 - 353
  • [3] Stroke Lesion Segmentation in FLAIR MRI Datasets Using Customized Markov Random Fields
    Subbanna, Nagesh K.
    Rajashekar, Deepthi
    Cheng, Bastian
    Thomalle, Goetz
    Fiehler, Jens
    Arbel, Tal
    Forkert, Nils D.
    [J]. FRONTIERS IN NEUROLOGY, 2019, 10
  • [4] Unsupervised image segmentation using Markov Random Fields
    Sengur, Abdulkadir
    Turkoglu, Ibrahim
    Ince, M. Cevdet
    [J]. ARTIFICIAL INTELLIGENCE AND NEURAL NETWORKS, 2006, 3949 : 158 - 167
  • [5] Restored texture segmentation using Markov random fields
    Kinge, Sanjaykumar
    Rani, B. Sheela
    Sutaone, Mukul
    [J]. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (06) : 10063 - 10089
  • [6] STEREOPHONIC SPECTROGRAM SEGMENTATION USING MARKOV RANDOM FIELDS
    Kim, Minje
    Smaragdis, Paris
    Ko, Glenn G.
    Rutenbar, Rob A.
    [J]. 2012 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2012,
  • [7] Sea ice segmentation using Markov random fields
    Yue, B
    Clausi, DA
    [J]. IGARSS 2001: SCANNING THE PRESENT AND RESOLVING THE FUTURE, VOLS 1-7, PROCEEDINGS, 2001, : 1877 - 1879
  • [8] Markov Random Fields in Image Segmentation
    Kato, Zoltan
    Zerubia, Josiane
    [J]. FOUNDATIONS AND TRENDS IN SIGNAL PROCESSING, 2011, 5 (1-2): : 1 - 155
  • [9] Segmentation of Rumex obtusifolius using Gaussian Markov random fields
    Santosh Hiremath
    Valentyn A. Tolpekin
    Gerie van der Heijden
    Alfred Stein
    [J]. Machine Vision and Applications, 2013, 24 : 845 - 854
  • [10] MOTION SEGMENTATION IN COMPRESSED VIDEO USING MARKOV RANDOM FIELDS
    Chen, Yue-Meng
    Bajic, Ivan V.
    Saeedi, Parvaneh
    [J]. 2010 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME 2010), 2010, : 760 - 765