MOTION SEGMENTATION IN COMPRESSED VIDEO USING MARKOV RANDOM FIELDS

被引:6
|
作者
Chen, Yue-Meng [1 ]
Bajic, Ivan V. [1 ]
Saeedi, Parvaneh [1 ]
机构
[1] Simon Fraser Univ, Sch Engn Sci, Burnaby, BC V5A 1S6, Canada
关键词
Motion segmentation; Markov Random Field; compressed video; OBJECT SEGMENTATION; IMAGES;
D O I
10.1109/ICME.2010.5583034
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we propose an unsupervised segmentation algorithm for extracting moving objects/regions from compressed video using Markov Random Field (MRF) classification. First, motion vectors (MVs) are quantized into several representative classes, from which MRF priors are estimated. Then, a coarse segmentation map of the MV field is obtained using a maximum a posteriori estimate of the MRF label process. Finally, the boundaries of segmented moving regions are refined using color and edge information. The algorithm has been validated on a number of test sequences, and experimental results are provided to demonstrate its superiority over state-of-the-art methods.
引用
收藏
页码:760 / 765
页数:6
相关论文
共 50 条
  • [1] Moving Region Segmentation From Compressed Video Using Global Motion Estimation and Markov Random Fields
    Chen, Yue-Meng
    Bajic, Ivan V.
    Saeedi, Parvaneh
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2011, 13 (03) : 421 - 431
  • [2] Segmentation of motion textures using mixed-state Markov random fields
    Crivelli, T.
    Cernuschi-Frias, B.
    Bouthemy, P.
    Yao, J. F.
    [J]. MATHEMATICS OF DATA IMAGE PATTERN RECOGNITION, COMPRESSION, AND ENCRYPTION WITH APPLICATIONS IX, 2006, 6315
  • [3] Moving Region Segmentation from Compressed Video using Global Motion Estimation by macroblock Classification and Markov Random field Model
    Devi, K. Suganya
    Malmurugan, N.
    Ambika, H.
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON EMERGING TRENDS IN COMPUTING, COMMUNICATION AND NANOTECHNOLOGY (ICE-CCN'13), 2013, : 163 - 167
  • [4] Leukocytes Segmentation Using Markov Random Fields
    Reta, C.
    Altamirano, L.
    Gonzalez, J. A.
    Diaz, R.
    Guichard, J. S.
    [J]. SOFTWARE TOOLS AND ALGORITHMS FOR BIOLOGICAL SYSTEMS, 2011, 696 : 345 - 353
  • [5] Video Object Tracking in the Compressed Domain Using Spatio-Temporal Markov Random Fields
    Khatoonabadi, Sayed Hossein
    Bajic, Ivan V.
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (01) : 300 - 313
  • [6] Video segmentation using spatiotemporal Markov random field
    Hwang, SW
    Kim, EY
    Yun, TS
    Kim, HJ
    [J]. COMPUTER APPLICATIONS IN INDUSTRY AND ENGINEERING, 2000, : 349 - 352
  • [7] Model based segmentation of motion fields in compressed video sequences using partition projection and relaxation
    Treetasanatavorn, S
    Rauschenbach, U
    Heuer, J
    Kaup, A
    [J]. VISUAL COMMUNICATIONS AND IMAGE PROCESSING 2005, PTS 1-4, 2005, 5960 : 111 - 120
  • [8] Unsupervised image segmentation using Markov Random Fields
    Sengur, Abdulkadir
    Turkoglu, Ibrahim
    Ince, M. Cevdet
    [J]. ARTIFICIAL INTELLIGENCE AND NEURAL NETWORKS, 2006, 3949 : 158 - 167
  • [9] Restored texture segmentation using Markov random fields
    Kinge, Sanjaykumar
    Rani, B. Sheela
    Sutaone, Mukul
    [J]. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (06) : 10063 - 10089
  • [10] STEREOPHONIC SPECTROGRAM SEGMENTATION USING MARKOV RANDOM FIELDS
    Kim, Minje
    Smaragdis, Paris
    Ko, Glenn G.
    Rutenbar, Rob A.
    [J]. 2012 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2012,