Concurrent error detection in wavelet lifting transforms

被引:6
|
作者
Redinbo, GR [1 ]
Nguyen, C [1 ]
机构
[1] Univ Calif Davis, Dept Elect & Comp Engn, Livermore, CA 95616 USA
基金
美国国家科学基金会;
关键词
wavelet transforms; concurrent error detection; weighted sum parity; real number codes; algorithm-based fault tolerance; error gain matrices; dual space functionals; biorthogonality;
D O I
10.1109/TC.2004.74
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Wavelet transforms, central to multiresolution signal analysis and important in the JPEG2000 image compression standard, are quite susceptible to computer-induced errors because of their pipelined structure and multirate processing requirements. Such errors emanate from computer hardware, software bugs, or radiation effects from the surrounding environment. Implementations use lifting schemes, which employ update and prediction estimation stages, and can spread a single numerical error caused by failures to many output transform coefficients without any features to warn data users. This paper proposes an efficient method to detect the arithmetic errors using weighted sums of the wavelet coefficients at the output compared with an equivalent parity value derived from the input data. Two parity values may straddle a complete multistage transform or several values may be used, each pair covering a single stage. There is greater error-detecting capability at only a slight increase in complexity when parity pairs are interspersed between stages. With the parity weighting design scheme, a single error introduced at a lifting section can be detected. The parity computation operation is properly viewed as an inner product between weighting values and the data, motivating the use of dual space functionals related to the error gain matrices. The parity weighting values are generated by a combination of dual space functionals. An iterative procedure for evaluating the design of the parity weights has been incorporated in Matlab code and simulation results are presented.
引用
收藏
页码:1291 / 1302
页数:12
相关论文
共 50 条
  • [1] Error Detection in 2-D Discrete Wavelet Lifting Transforms
    Hu, Shih-Hsin
    Abraham, Jacob A.
    [J]. 2009 15TH IEEE INTERNATIONAL ON-LINE TESTING SYMPOSIUM, 2009, : 170 - 175
  • [2] Protecting wavelet lifting transforms
    Redinbo, GR
    Nguyen, C
    [J]. 10TH IEEE PACIFIC RIM INTERNATIONAL SYMPOSIUM ON DEPENDABLE COMPUTING, PROCEEDINGS, 2004, : 227 - 236
  • [3] Factoring wavelet transforms into lifting steps
    Daubechies, I
    Sweldens, W
    [J]. WAVELETS IN THE GEOSCIENCES, 2000, 90 : 131 - 157
  • [4] Factoring wavelet transforms into lifting steps
    Ingrid Daubechies
    Wim Sweldens
    [J]. Journal of Fourier Analysis and Applications, 1998, 4 : 247 - 269
  • [5] Adaptive wavelet transforms VPA lifting
    Claypoole, RL
    Baraniuk, RG
    Nowak, RD
    [J]. PROCEEDINGS OF THE 1998 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-6, 1998, : 1513 - 1516
  • [6] Automation of the lifting factorisation of wavelet transforms
    Maslen, M
    Abbott, P
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2000, 127 (2-3) : 309 - 326
  • [7] Factoring wavelet transforms into lifting steps
    Daubechies, I
    Sweldens, W
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1998, 4 (03) : 247 - 269
  • [8] A unified framework for wavelet transforms based on the lifting scheme
    Yoo, H
    Jeong, J
    [J]. 2001 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL III, PROCEEDINGS, 2001, : 792 - 795
  • [9] Adaptive wavelet transforms for image coding using lifting
    Claypoole, R
    Davis, G
    Sweldens, W
    Baraniuk, R
    [J]. DCC '98 - DATA COMPRESSION CONFERENCE, 1998, : 537 - 537
  • [10] Lifting construction of non-linear wavelet transforms
    Claypoole, RL
    Baraniuk, RG
    Nowak, RD
    [J]. PROCEEDINGS OF THE IEEE-SP INTERNATIONAL SYMPOSIUM ON TIME-FREQUENCY AND TIME-SCALE ANALYSIS, 1998, : 49 - 52