On the existence of a new type of periodic and quasi-periodic orbits for twist maps of the torus

被引:9
|
作者
Addas-Zanata, S [1 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
关键词
D O I
10.1088/0951-7715/15/5/303
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that for a large and important class of C-1 twist maps of the torus periodic and quasi-periodic orbits of a new type exist, provided that there are no rotational invariant circles (RICs). These orbits have a non-zero 'vertical rotation number' (VRN), in contrast to what happens to Birkhoff periodic orbits and Aubry-Mather sets. The VRN is rational for a periodic orbit and irrational for a quasi-periodic. We also prove, that the existence of an orbit with a VRN = a > 0, implies the existence of orbits with VRN = b, for all 0 < b < a. In this way, related to a generalized definition of rotation number, we characterize all kinds of periodic and quasi-periodic orbits a twist map of the torus can have. As a consequence of the previous results we obtain that a twist map of the torus with no RICs has positive topological entropy, which is a very classical result. At the end of the paper we present some examples, like the standard map, such that our results apply.
引用
收藏
页码:1399 / 1416
页数:18
相关论文
共 50 条
  • [21] SUPERSTABLE PERIODIC ORBITS OF 1D MAPS UNDER QUASI-PERIODIC FORCING AND REDUCIBILITY LOSS
    Jorba, Angel
    Rabassa, Pau
    Carles Tatjer, Joan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (02) : 589 - 597
  • [22] Bifurcations of quasi-periodic dynamics: torus breakdown
    Bakri, Taoufik
    Verhulst, Ferdinand
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2014, 65 (06): : 1053 - 1076
  • [23] Bifurcations of quasi-periodic dynamics: torus breakdown
    Taoufik Bakri
    Ferdinand Verhulst
    Zeitschrift für angewandte Mathematik und Physik, 2014, 65 : 1053 - 1076
  • [24] The existence of quasi-periodic triangular buildings
    Barre, Sylvain
    Pichot, Mikael
    MATHEMATISCHE ANNALEN, 2011, 350 (01) : 227 - 242
  • [25] The isospectral torus of quasi-periodic Schrodinger operators via periodic approximations
    Damanik, David
    Goldstein, Michael
    Lukic, Milivoje
    INVENTIONES MATHEMATICAE, 2017, 207 (02) : 895 - 980
  • [26] Optimization Over Families of Quasi-Periodic Orbits
    Lujan, David
    Scheeres, Daniel J.
    JOURNAL OF THE ASTRONAUTICAL SCIENCES, 2024, 71 (05):
  • [27] Distant quasi-periodic orbits around Mercury
    Xue Ma
    Junfeng Li
    Astrophysics and Space Science, 2013, 343 : 83 - 93
  • [28] Distant quasi-periodic orbits around Mercury
    Ma, Xue
    Li, Junfeng
    ASTROPHYSICS AND SPACE SCIENCE, 2013, 343 (01) : 83 - 93
  • [29] PERIODIC, QUASI-PERIODIC AND CHAOTIC ORBITS AND THEIR BIFURCATIONS IN A SYSTEM OF COUPLED OSCILLATORS
    AWREJCEWICZ, J
    SOMEYA, T
    JOURNAL OF SOUND AND VIBRATION, 1991, 146 (03) : 527 - 532
  • [30] BASINS OF PERIODIC-ORBITS FOR ELLIPTIC MAPS OF THE TORUS
    AMADASI, L
    CASARTELLI, M
    JOURNAL OF STATISTICAL PHYSICS, 1991, 65 (1-2) : 363 - 372