Calderon-Zygmund estimates for a class of quasilinear elliptic equations

被引:24
|
作者
Yao, Fengping [1 ]
Zhou, Shulin [2 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[2] Peking Univ, Sch Math Sci, LMAM, Beijing 100871, Peoples R China
关键词
Calderfin-Zygmund; Gradient; Elliptic; Quasilinear; REIFENBERG DOMAINS; BMO COEFFICIENTS; GRADIENT; REGULARITY; SYSTEMS;
D O I
10.1016/j.jfa.2016.11.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we obtain the following local Calderon-Zygmund estimates B(|f|) epsilon L-loc(q)(Omega)B(|del(u)|) epsilon L-loc(q)(O)for any q >= 1 of weak solutions for a class of quasilinear elliptic equations div (a(|del u|)del u)=div(a(|f|)f)in Omega, where B(t)=integral(t)(0) tau a(tau) d tau for t >= 0 (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:1524 / 1552
页数:29
相关论文
共 50 条