Strong Localization of Surface Plasmon Polaritons with Engineered Disorder

被引:28
|
作者
Shi, Wen-Bo [1 ,2 ]
Liu, Lian-Zi [1 ,2 ]
Peng, Ruwen [1 ,2 ]
Xu, Di-Hu [1 ,2 ]
Zhang, Kun [1 ,2 ]
Jing, Hao [1 ,2 ]
Fan, Ren-Hao [1 ,2 ]
Huang, Xian-Rong [3 ]
Wang, Qian-Jin [1 ,2 ]
Wang, Mu [1 ,2 ]
机构
[1] Nanjing Univ, Sch Phys, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[2] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[3] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA
基金
中国国家自然科学基金;
关键词
Strong localization of surface plasmon polaritons; Short-range correlated disorder; Anderson localization; Random nanolasing; ENHANCED RAMAN-SCATTERING; PHOTONIC QUASI-CRYSTALS; ANDERSON LOCALIZATION; RANDOM LASERS; WAVE-GUIDES; LIGHT; TRANSPORT; SUPERLATTICES; TRANSITION; LATTICES;
D O I
10.1021/acs.nanolett.7b05191
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this work, we experimentally demonstrate for the first time strong localization of surface plasmon polaritons (SPPs) at visible regime in metallic nanogratings with short-range correlated disorder. By increasing the degree of disorder, the confinement of SPPs is significantly enhanced, and the effective SPP propagation length dramatically shrinks. Strong localization of SPPs eventually emerges at visible regime, which is verified by the exponentially decayed fields and the vanishing autocorrelation function of the SPPs. Physically, the short-range correlated disorder induces strong interference among multiple scattered SPPs and provides an adequate fluctuation to effective permittivity, which leads to the localization effect. Our study demonstrates a unique opportunity for disorder engineering to manipulate light on nanoscale and may achieve various applications in random nanolasing, solar energy, and strong light-matter interactions.
引用
收藏
页码:1896 / 1902
页数:7
相关论文
共 50 条
  • [21] Nanoantenna structures for strong coupling studies of surface plasmon polaritons and quantum dots
    Vakevainen, A. I.
    Moerland, R. J.
    Eskelinen, A. -P.
    Rekola, H. T.
    Sharma, G.
    Lehtola, L. J.
    Torma, P.
    NANOPHOTONICS IV, 2012, 8424
  • [22] Strong Coupling between Self-Assembled Molecules and Surface Plasmon Polaritons
    Bigeon, J.
    Le Liepvre, S.
    Vassant, S.
    Belabas, N.
    Bardou, N.
    Minot, C.
    Yacomotti, A.
    Levenson, A.
    Charra, F.
    Barbay, S.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2017, 8 (22): : 5626 - 5632
  • [23] Strong amplitude and phase modulation of optical spatial coherence with surface plasmon polaritons
    Li, Dongfang
    Pacifici, Domenico
    SCIENCE ADVANCES, 2017, 3 (10):
  • [24] Strong Dipole Interaction between Chlorophyll-a Molecules and Surface Plasmon Polaritons
    Singh, Astha
    Sharma, Geeta
    Ghosh, Rajib
    Singh, Bhanu Pratap
    Vasa, Parinda
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (27): : 16965 - 16972
  • [25] Regenerated surface plasmon polaritons
    Lee, TW
    Gray, SK
    APPLIED PHYSICS LETTERS, 2005, 86 (14) : 1 - 3
  • [26] Simulation of surface plasmon polaritons
    Sjodin, Bjorn
    LASER FOCUS WORLD, 2023, 59 (04): : 41 - 44
  • [27] Inhomogeneous Surface Plasmon Polaritons
    Foley, Jonathan J.
    McMahon, Jeffrey M.
    Schatz, George C.
    Harutyunyan, Hayk
    Wiederrecht, Gary P.
    Gray, Stephen K.
    ACS PHOTONICS, 2014, 1 (08): : 739 - 745
  • [28] Propagation and dual-localization of surface plasmon polaritons in a quasiperiodic metal heterowaveguide
    Zhou, Lin
    Yu, Xiao-qiang
    Zhu, Yong-yuan
    APPLIED PHYSICS LETTERS, 2006, 89 (05)
  • [29] Interaction between localized-on-nanoparticles plasmon polaritons and surface plasmon polaritons
    Baryakhtar, Irina
    Demidenko, Yuri
    Lozovski, Valeri
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2013, 30 (04) : 1022 - 1026
  • [30] Transverse Anderson localization of channel plasmon polaritons
    Petracek, J.
    Kuzmiak, V
    PHYSICAL REVIEW A, 2018, 98 (02)