Adversarial Deep Learning for Online Resource Allocation

被引:2
|
作者
Du, Bingqian [1 ]
Huang, Zhiyi [1 ]
Wu, Chuan [1 ]
机构
[1] Univ Hong Kong, Pokfulam, Dept Comp Sci, Hong Kong, Peoples R China
关键词
Neural networks; adversarial learning; online algorithm; PRIMAL-DUAL ALGORITHMS; AUCTIONS;
D O I
10.1145/3494526
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Online algorithms are an important branch in algorithm design. Designing online algorithms with a bounded competitive ratio (in terms of worst-case performance) can be hard and usually relies on problem-specific assumptions. Inspired by adversarial training from Generative Adversarial Net and the fact that the competitive ratio of an online algorithm is based on worst-case input, we adopt deep neural networks (NNs) to learn an online algorithm for a resource allocation and pricing problem from scratch, with the goal that the performance gap between offline optimum and the learned online algorithm can be minimized for worst-case input. Specifically, we leverage two NNs as the algorithm and the adversary, respectively, and let them play a zero sum game, with the adversary being responsible for generating worst-case input while the algorithm learns the best strategy based on the input provided by the adversary. To ensure better convergence of the algorithm network (to the desired online algorithm), we propose a novel per-round update method to handle sequential decision making to break complex dependency among different rounds so that update can be done for every possible action instead of only sampled actions. To the best of our knowledge, our work is the first using deep NNs to design an online algorithm from the perspective of worst-case performance guarantee. Empirical studies show that our updating methods ensure convergence to Nash equilibrium and the learned algorithm outperforms state-of-the-art online algorithms under various settings.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] RADDPG: Resource Allocation in Cognitive Radio with Deep Reinforcement Learning
    Mishra, Nikita
    Srivastava, Sumit
    Sharan, Shivendra Nath
    2021 INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS & NETWORKS (COMSNETS), 2021, : 589 - 595
  • [22] ReCARL: Resource Allocation in Cloud RANs With Deep Reinforcement Learning
    Xu, Zhiyuan
    Tang, Jian
    Yin, Chengxiang
    Wang, Yanzhi
    Xue, Guoliang
    Wang, Jing
    Gursoy, M. Cenk
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2022, 21 (07) : 2533 - 2545
  • [23] Deep Reinforcement Learning Based Resource Allocation for Heterogeneous Networks
    Yang, Helin
    Zhao, Jun
    Lam, Kwok-Yan
    Garg, Sahil
    Wu, Qingqing
    Xiong, Zehui
    2021 17TH INTERNATIONAL CONFERENCE ON WIRELESS AND MOBILE COMPUTING, NETWORKING AND COMMUNICATIONS (WIMOB 2021), 2021, : 253 - 258
  • [24] Dynamic Resource Allocation in Network Slicing with Deep Reinforcement Learning
    Cai, Yue
    Cheng, Peng
    Chen, Zhuo
    Xiang, Wei
    Vucetic, Branka
    Li, Yonghui
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 2955 - 2960
  • [25] Dynamic Resource Allocation for Metaverse Applications with Deep Reinforcement Learning
    Chu, Nam H.
    Nguyen, Diep N.
    Hoang, Dinh Thai
    Phan, Khoa T.
    Dutkiewicz, Eryk
    Niyato, Dusit
    Shu, Tao
    2023 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, WCNC, 2023,
  • [26] Enabling Flexible Resource Allocation in Mobile Deep Learning Systems
    Wu, Chao
    Zhang, Lan
    Li, Qiushi
    Fu, Ziyan
    Zhu, Wenwu
    Zhang, Yaoxue
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2019, 30 (02) : 346 - 360
  • [27] Network Resource Allocation Strategy Based on Deep Reinforcement Learning
    Zhang, Shidong
    Wang, Chao
    Zhang, Junsan
    Duan, Youxiang
    You, Xinhong
    Zhang, Peiying
    IEEE OPEN JOURNAL OF THE COMPUTER SOCIETY, 2020, 1 (01): : 86 - 94
  • [28] Resource allocation algorithm for MEC based on Deep Reinforcement Learning
    Wang, Yijie
    Chen, Xin
    Chen, Ying
    Du, Shougang
    2021 IEEE INTERNATIONAL PERFORMANCE, COMPUTING, AND COMMUNICATIONS CONFERENCE (IPCCC), 2021,
  • [29] Deep Reinforcement Learning for Resource Allocation in Blockchain-based Federated Learning
    Dai, Yueyue
    Yang, Huijiong
    Yang, Huiran
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 179 - 184
  • [30] Adversarial Attacks on Deep Learning Based Power Allocation in a Massive MIMO Network
    Manoj, B. R.
    Sadeghi, Meysam
    Larsson, Erik G.
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2021), 2021,