Bioelectrocatalytic Reduction of Hydrogen Peroxide by Microperoxidase-11 Immobilized on Mesoporous Antimony-Doped Tin Oxide

被引:14
|
作者
Neumann, Bettina [1 ]
Kielb, Patrycja [2 ]
Rustam, Lina [3 ]
Fischer, Anna [3 ]
Weidinger, Inez M. [2 ,4 ]
Wollenberger, Ulla [1 ]
机构
[1] Univ Potsdam, Inst Biochem & Biol, Karl Liebknecht Str 24-25, D-14476 Potsdam, Germany
[2] Tech Univ Berlin, Inst Chem, Str 17 Juni 135, D-10623 Berlin, Germany
[3] Univ Freiburg, Inst Inorgan & Analyt Chem, Albertstr 21, D-79104 Freiburg, Germany
[4] Tech Univ Dresden, Dept Chem & Food Chem, Helmholtzstr 10, D-01069 Dresden, Germany
来源
CHEMELECTROCHEM | 2017年 / 4卷 / 04期
关键词
electrochemistry; enzyme catalysis; mesoporous materials; microperoxidase; spectroelectrochemistry; DIRECT ELECTRON-TRANSFER; MONOLAYER-FUNCTIONALIZED ELECTRODES; ELECTROCATALYTIC REDUCTION; DIRECT ELECTROCHEMISTRY; GOLD ELECTRODE; CYTOCHROME-C; HEME; CARBON; INACTIVATION; SOLVENTS;
D O I
10.1002/celc.201600776
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The heme-undecapeptide microperoxidase-11 (MP-11) was immobilized on mesoporous antimony-doped tin oxide (ATO) thin-film electrodes modified with the positively charged binding promotor polydiallyldimethylammonium chloride. Surface concentrations of MP-11 of 1.5 nmol cm(-2) were sufficiently high to enable spectroelectrochemical analyses. UV/Vis spectroscopy and resonance Raman spectroscopy revealed that immobilized MP-11 adopts a six-coordinated low-spin conformation, as in solution in the presence of a polycation. Cathodic reduction of hydrogen peroxide at potentials close to +500mV versus Ag/AgCl indicates that the reaction proceeds via a Compound I-type like intermediate, analogous to natural peroxidases, and confirms mesoporous ATO as a suitable host material for adsorbing the heme-peptide in its native state. A hydrogen peroxide sensor is proposed by using the bioelectrocatalytic properties of the MP-11-modified ATO.
引用
收藏
页码:913 / 919
页数:7
相关论文
共 50 条
  • [31] A mechanism for oxygen vacancy formation in antimony-doped tin(IV) oxide
    Dyshel, DE
    INORGANIC MATERIALS, 1996, 32 (01) : 51 - 54
  • [32] Enhanced mechanical and electrical properties of antimony-doped tin oxide coatings
    Castro, M. R. S.
    WOliveira, P.
    Schmidt, H. K.
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2008, 23 (03)
  • [33] Understanding Macrophage Interaction with Antimony-Doped Tin Oxide Plasmonic Nanoparticles
    Balitskii, Olexiy
    Ivasiv, Viktoriya
    Porteiro-Figueiras, Maria
    Yajan, Phattadon
    Witzig, Mira
    Moreno-Echeverri, Aura Maria
    Diaz, Jose Muneton
    Rothen-Rutishauser, Barbara
    Petri-Fink, Alke
    Keshavan, Sandeep
    CELLS, 2024, 13 (17)
  • [34] Controlled coating of antimony-doped tin oxide nanoparticles on kaolinite particles
    Hu, Peiwei
    Yang, Huaming
    APPLIED CLAY SCIENCE, 2010, 48 (03) : 368 - 374
  • [35] Transport and sensors properties of nanostructured antimony-doped tin oxide films
    Giraldi, T. R.
    Escote, M. T.
    Maciel, A. P.
    Longo, E.
    Leite, E. R.
    Varela, J. A.
    THIN SOLID FILMS, 2006, 515 (04) : 2678 - 2685
  • [36] GaNUV photodetector by using transparency antimony-doped tin oxide electrode
    Tu, Ming-Lung
    Su, Yan-Kuin
    Chang, Shoou-Jinn
    Chuang, Ricky W.
    JOURNAL OF CRYSTAL GROWTH, 2007, 298 (SPEC. ISS) : 744 - 747
  • [37] ELECTROLYTIC GENERATION OF SILVER(II) AT ANTIMONY-DOPED TIN OXIDE ELECTRODES
    LAITINEN, HA
    CONLEY, JM
    ANALYTICAL CHEMISTRY, 1976, 48 (08) : 1224 - 1228
  • [38] Antimony-doped tin oxide nanotubes for high capacity lithium storage
    Wu, Feng Dan
    Wu, Minghong
    Wang, Yong
    ELECTROCHEMISTRY COMMUNICATIONS, 2011, 13 (05) : 433 - 436
  • [39] Antimony-Doped Tin Oxide Aerogel Based on Epoxide Additional Method
    Yu Qiu-Jie
    Zhou Bin
    Zhang Zhi-Hua
    Liu Guang-Wu
    Du Ai
    ACTA PHYSICO-CHIMICA SINICA, 2014, 30 (03) : 500 - 507
  • [40] Preparation and characterization of conductive antimony-doped tin oxide (ATO) nanoparticles
    林锋
    段学臣
    任先京
    广东有色金属学报, 2005, (Z1) : 258 - 261