Influence of the exchange-correlation potential and magnetic properties on the Li2FeSiO4 cathode materials

被引:10
|
作者
Lian, Dongxiao [1 ]
Zhao, Yuhong [1 ]
Hou, Hua [1 ]
Wang, Shuo [1 ]
Wen, Zhiqin [1 ]
Zhang, Qian [1 ]
Guo, Qingwei [1 ]
机构
[1] North Univ China, Sch Mat Sci & Engn, Taiyuan 030051, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Li2FeSiO4; Magnetic properties; Exchange-correlation potential; Thermodynamic properties; Electronic structure; DENSITY-FUNCTIONAL THEORY; TOTAL-ENERGY CALCULATIONS; AB-INITIO; MN; 1ST-PRINCIPLES; FE; CO; ELECTROCHEMISTRY; THERMODYNAMICS; INTERCALATION;
D O I
10.1016/j.commatsci.2019.04.053
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Seen the interest in the application of the density-functional theory (DFT) calculations to reproduce the experimentally observed properties of the potential electrode materials, we consider the electronic structure, electrochemical properties, mechanical and thermodynamic properties of the Li(2)FeSiO(4 )compound using magnetic or non-magnetic gradient-corrected density-functional theory (GGA + SP, GGA) and magnetic or nonmagnetic DFT corrected for on-site Coulomb interactions (GGA + U + SP, GGA + U) to allow a direct comparison of the four methods. In terms of the structural characteristics, the non-magnetic scheme cannot correctly describe them, but magnetic scheme can. However, like in GGA + SP and GGA + U + SP method, the accuracy is different in the description of the microscopic details for different magnetic schemes. As for electrochemical and electronic properties, only GGA + U + SP results are in line with the experimental values due to the reset of the electronic structure. The results show that both enhanced localization and spin-polarized effects present in the GGA + U + SP approximation are essential to reproduce the experimentally observed properties of the polyanionic compounds. Furthermore, we found that the inductive effect of the exchange correlation potential and magnetic properties also has some effect on the thermodynamic properties of the polyanionic compounds.
引用
收藏
页码:260 / 267
页数:8
相关论文
共 50 条
  • [41] Synthesis and electrochemical properties of Li2FeSiO4/C/Ag composite as a cathode material for Li-ion battery
    Tang Yi-qun
    Liu Xi
    Huang Xiao-bing
    Ding Xiang
    Zhou Shi-biao
    Chen Yuan-dao
    JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2019, 26 (06) : 1443 - 1448
  • [42] Barium Doped Li2FeSiO4 Cathode Material for Li-Ion Secondary Batteries
    Kim, Cheong
    Yoo, Gi Won
    Son, Jong Tae
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2015, 15 (11) : 8808 - 8812
  • [43] Enhanced electrochemical performance of Li2FeSiO4/C cathode materials by surface modification with AlPO4 nanosheets
    Qiu, Hailong
    Yue, Huijuan
    Zhang, Tong
    Li, Tingting
    Wang, Chunzhong
    Chen, Gang
    Wei, Yingjin
    Zhang, Dong
    ELECTROCHIMICA ACTA, 2016, 222 : 1870 - 1877
  • [44] Preparation and Characterization of N-doped Li2FeSiO4/C Cathode Materials for Lithium Ion Batteries
    Zhang Dong
    Li Tingting
    Qiu Hailong
    Wei Yingjin
    Wang Chunzhong
    Chen Gang
    Yue Huijuan
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2017, 38 (09): : 1633 - 1638
  • [45] Investigation on Li2FeSiO4 and Li2FeSiO4/C synthesised through facile solid-state reaction
    Qiao, Huali
    Duan, Anran
    Wang, Ting
    Liu, Ping
    Wang, Dan
    Pan, Hongyu
    Cao, Zhijie
    Dong, Wenhao
    Ma, Xiaobo
    Wang, Hailong
    MATERIALS TECHNOLOGY, 2020, 35 (9-10) : 546 - 552
  • [46] Freeze-drying Synthesis and Characterization of Li2FeSiO4/C Cathode Materials for Lithium Ion Batteries
    Zhang Dong
    Li Haoming
    Qiu Hailong
    Chen Gang
    Yue Huijuan
    Liu Anhua
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2017, 38 (08): : 1436 - 1441
  • [47] Diffusion Mechanism of Polaron-Li Vacancy Complex in Cathode Material Li2FeSiO4
    Kieu My Bui
    Van An Dinh
    Ohno, Takahisa
    APPLIED PHYSICS EXPRESS, 2012, 5 (12)
  • [48] An ab initio study of the Li-ion battery cathode material Li2FeSiO4
    Larsson, Peter
    Ahuja, Rajeev
    Nyten, Anton
    Thomas, John O.
    ELECTROCHEMISTRY COMMUNICATIONS, 2006, 8 (05) : 797 - 800
  • [49] Effects of carbon on the structure and electrochemical performance of Li2FeSiO4 cathode materials for lithium-ion batteries
    Zuo, Pengjian
    Wang, Tao
    Cheng, Guangyu
    Cheng, Xinqun
    Du, Chunyu
    Yin, Geping
    RSC ADVANCES, 2012, 2 (17): : 6994 - 6998
  • [50] Challenges in the crystal growth of Li2FeSiO4
    Hergett, Waldemar
    Neef, Christoph
    Meyer, Hans -Peter
    Klingeler, Ruediger
    JOURNAL OF CRYSTAL GROWTH, 2021, 556