Local rotundity structure of Calderon-Lozanovskii spaces

被引:9
|
作者
Hudzik, Henryk
Kolwicz, Pawel
Narloch, Agata
机构
[1] Adam Mickiewicz Univ, Fac Math & Comp Sci, PL-61614 Poznan, Poland
[2] Poznan Univ Tech, Inst Math Elect Fac, PL-60965 Poznan, Poland
[3] Szczecin Univ, Inst Math, PL-70451 Szczecin, Poland
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2006年 / 17卷 / 03期
关键词
Orlicz function; Kothe space; Calderon-Lozanovskii space; delta two type condition; extreme point; strongly extreme point; point of lower (upper) monotonicity; point of local uniform monotonicity;
D O I
10.1016/S0019-3577(06)80039-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
General results saying that a point x of the unit sphere S(E) of a Kothe space E is an extreme point (a strongly extreme point) [an SU-point] of B(E) if and only if vertical bar x vertical bar is an extreme point (a strongly extreme point) [an SU-point] of B(E+) and vertical bar x vertical bar is a UM-point (a ULUM-point) [nothing more] of E are proved. These results are applied to get criteria for extreme points and SU-points of the unit ball in Calderon-Lozanovskii spaces which refer to problem XII from [5]. Strongly extreme points in these spaces are also discussed.
引用
收藏
页码:373 / 395
页数:23
相关论文
共 50 条