Embedding laser generated nanocrystals in BiVO4 photoanode for efficient photoelectrochemical water splitting

被引:6
|
作者
Jian, Jie [1 ,2 ]
Xu, Youxun [1 ,2 ]
Yang, Xiaokun [1 ,2 ]
Liu, Wei [1 ,2 ]
Fu, Maosen [1 ,2 ]
Yu, Huiwu [1 ,2 ]
Xu, Fei [1 ,2 ]
Feng, Fan [3 ]
Jia, Lichao [3 ]
Friedrich, Dennis [4 ]
van de Krol, Roel [4 ]
Wang, Hongqiang [1 ,2 ]
机构
[1] Northwestern Polytech Univ, State Key Lab Solidificat Proc, Ctr Nano Energy Mat, Sch Mat Sci & Engn, Xian 710072, Shaanxi, Peoples R China
[2] Shaanxi Joint Labortary Graphene, Xian 710072, Shaanxi, Peoples R China
[3] Shaanxi Normal Univ, Key Lab Appl Surface & Colloid Chem, Natl Minist Educ,Sch Mat Sci & Engn, Shaanxi Key Lab Adv Energy Devices,Shaanxi Engn L, 620 West Changan St, Xian 710119, Shaanxi, Peoples R China
[4] Helmholtz Zentrum Berlin Mat & Energie GmbH, Inst Solar Fuels, Hahn Meitner Pl 1, D-14109 Berlin, Germany
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
CHARGE SEPARATION EFFICIENCY; NANOPARTICLES; PERFORMANCE; ELECTRODES; TRANSPORT; OXIDATION; DYNAMICS; SURFACE; DRIVEN;
D O I
10.1038/s41467-019-10543-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Addressing the intrinsic charge transport limitation of metal oxides has been of significance for pursuing viable PEC water splitting photoelectrodes. Growing a photoelectrode with conductive nanoobjects embedded in the matrix is promising for enhanced charge transport but remains a challenge technically. We herein show a strategy of embedding laser generated nanocrystals in BiVO4 photoanode matrix, which achieves photocurrent densities of up to 5.15 mA cm(-2) at 1.23 V-RHE (from original 4.01 mA cm(-2)) for a single photoanode configuration, and 6.22 mA cm(-2) at 1.23 V-RHE for a dual configuration. The enhanced performance by such embedding is found universal owing to the typical features of laser synthesis and processing of colloids (LSPC) for producing ligand free nanocrystals in desired solvents. This study provides an alternative to address the slow bulk charge transport that bothers most metal oxides, and thus is significant for boosting their PEC water splitting performance.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Reduced graphene oxide decorated SnO2/BiVO4 photoanode for photoelectrochemical water splitting
    Bai, Shouli
    Tian, Ke
    Meng, Jonathan Chenhui
    Zhao, Yingying
    Sun, Jianhua
    Zhang, Kewei
    Feng, Yongjun
    Luo, Ruixian
    Li, Dianqing
    Chen, Aifan
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 855
  • [42] Ag-doped BiVO4/BiFeO3 photoanode for highly efficient and stable photocatalytic and photoelectrochemical water splitting
    Soltani, Tayyebeh
    Lee, Byeong-Kyu
    Science of the Total Environment, 2021, 736
  • [43] Ag-doped BiVO4/BiFeO3 photoanode for highly efficient and stable photocatalytic and photoelectrochemical water splitting
    Soltani, Tayyebeh
    Lee, Byeong-Kyu
    SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 736
  • [44] Efficient photoelectrochemical water oxidation of cobalt phthalocyanine decorated BiVO4 photoanode by improving kinetics
    Shen, Xiaoliang
    Zhao, Long
    Fan, Weiqiang
    Ren, Jinshen
    Wang, Qi
    Wang, Aijian
    Shang, Danhong
    Zhu, Weihua
    APPLIED SURFACE SCIENCE, 2021, 564
  • [45] Efficient charge separation and transfer of a TaON/BiVO4 heterojunction for photoelectrochemical water splitting
    Li, Na
    Jiang, Yi
    Wang, Xiaodi
    Hu, Chongyang
    Jiang, Wenchao
    Li, Siyuan
    Xia, Lixin
    RSC ADVANCES, 2021, 11 (22) : 13269 - 13273
  • [46] Nanostructured WO3/BiVO4 Photoanodes for Efficient Photoelectrochemical Water Splitting
    Pihosh, Yuriy
    Turkevych, Ivan
    Mawatari, Kazuma
    Asai, Tomohiro
    Hisatomi, Takashi
    Uemura, Jin
    Tosa, Masahiro
    Shimamura, Kiyoshi
    Kubota, Jun
    Domen, Kazunari
    Kitamori, Takehiko
    SMALL, 2014, 10 (18) : 3692 - 3699
  • [47] Cactus shaped FeOOH/Au/BiVO4 photoanodes for efficient photoelectrochemical water splitting
    Geng, Huimin
    Ying, Pengzhan
    Zhao, Yulong
    Gu, Xiuquan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (71) : 35280 - 35289
  • [48] A Front-Illuminated Nanostructured Transparent BiVO4 Photoanode for > 2% Efficient Water Splitting
    Kuang, Yongbo
    Jia, Qingxin
    Nishiyama, Hiroshi
    Yamada, Taro
    Kudo, Akihiko
    Domen, Kazunari
    ADVANCED ENERGY MATERIALS, 2016, 6 (02)
  • [49] Bifacial Modulation of Carrier Transport in BiVO4 Photoanode for Stable Photoelectrochemical Water Splitting via Interface Engineering
    Mane, Pratik
    Bagal, Indrajit, V
    Bae, Hyojung
    Burungale, Vishal
    Seong, Chaewon
    Ryu, Sang-Wan
    Ha, Jun-Seok
    ADVANCED SUSTAINABLE SYSTEMS, 2022, 6 (06)
  • [50] BiVO4 Ceramic Photoanode with Enhanced Photoelectrochemical Stability
    Zheng, Liren
    Wang, Minrui
    Li, Yujie
    Ma, Fahao
    Li, Jiyu
    Jiang, Weiyi
    Liu, Mu
    Cheng, Hefeng
    Wang, Zeyan
    Zheng, Zhaoke
    Wang, Peng
    Liu, Yuanyuan
    Dai, Ying
    Huang, Baibiao
    NANOMATERIALS, 2021, 11 (09)