A Sparse-View CT Reconstruction Method Based on Combination of DenseNet and Deconvolution

被引:272
|
作者
Zhang, Zhicheng [1 ,2 ,3 ]
Liang, Xiaokun [1 ,2 ]
Dong, Xu [3 ]
Xie, Yaoqin [1 ,2 ]
Cao, Guohua [3 ]
机构
[1] Chinese Acad Sci, Shenzhen Inst Adv Technol, Inst Biomed & Hlth Engn, Shenzhen 518055, Peoples R China
[2] Univ Chinese Acad Sci, Shenzhen Coll Adv Technol, Shenzhen 518055, Peoples R China
[3] Virginia Polytech Inst & State Univ, Dept Biomed Engn & Mech, Blacksburg, VA 24061 USA
基金
美国国家科学基金会;
关键词
Sparse-view CT; CT reconstruction; deep learning; DenseNet; deconvolution; IMAGE-RECONSTRUCTION; COMPUTED-TOMOGRAPHY; NEURAL-NETWORK; ALGORITHM;
D O I
10.1109/TMI.2018.2823338
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Sparse-view computed tomography (CT) holds great promise for speeding up data acquisition and reducing radiation dose in CT scans. Recent advances in reconstruction algorithms for sparse-view CT, such as iterative reconstruction algorithms, obtained high-quality image while requiring advanced computing power. Lately, deep learning (DL) has been widely used in various applications and has obtained many remarkable outcomes. In this paper, we propose a new method for sparse-view CT reconstruction based on the DL approach. The method can be divided into two steps. First, filter backprojection (FBP) was used to reconstruct the CT image from sparsely sampled sinogram. Then, the FBP results were fed to a DL neural network, which is a DenseNet and deconvolution-based network (DD-Net). The DD-Net combines the advantages of DenseNet and deconvolution and applies shortcut connections to concatenate DenseNet and deconvolution to accelerate the training speed of the network; all of those operations can greatly increase the depth of network while enhancing the expression ability of the network. After the training, the proposed DD-Net achieved a competitive performance relative to the state-of-the-art methods in terms of streaking artifacts removal and structure preservation. Compared with the other state-of-the-art reconstruction methods, the DD-Net method can increase the structure similarity by up to 18% and reduce the root mean square error by up to 42%. These results indicate that DD-Net has great potential for sparse-view CT image reconstruction.
引用
收藏
页码:1407 / 1417
页数:11
相关论文
共 50 条
  • [1] Sparse-view CT reconstruction with improved GoogLeNet
    Xie, Shipeng
    Zhang, Pengcheng
    Luo, Limin
    Li, Haibo
    MEDICAL IMAGING 2018: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2018, 10578
  • [2] Sparse-View CT Reconstruction Via Generative Adversarial Network (GAN) Using Fully Convolutional DenseNet (FC-DenseNet)
    Park, I.
    Chun, J.
    Choi, B.
    Yoo, S.
    Kim, J.
    Kim, H.
    MEDICAL PHYSICS, 2021, 48 (06)
  • [3] A Transformer-Based Iterative Reconstruction Model for Sparse-View CT Reconstruction
    Xia, Wenjun
    Yang, Ziyuan
    Zhou, Qizheng
    Lu, Zexin
    Wang, Zhongxian
    Zhang, Yi
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT VI, 2022, 13436 : 790 - 800
  • [4] SPARSE-VIEW CT RECONSTRUCTION VIA CONVOLUTIONAL SPARSE CODING
    Bao, Peng
    Xia, Wenjun
    Yang, Kang
    Zhou, Jiliu
    Zhang, Yi
    2019 IEEE 16TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2019), 2019, : 1446 - 1449
  • [5] Sparse-view CT reconstruction based on gradient directional total variation
    Qu, Zhaoyan
    Zhao, Xiaojie
    Pan, Jinxiao
    Chen, Ping
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2019, 30 (05)
  • [6] Sparse-View CT Reconstruction Using Wasserstein GANs
    Thaler, Franz
    Hammernik, Kerstin
    Payer, Christian
    Urschler, Martin
    Stern, Darko
    MACHINE LEARNING FOR MEDICAL IMAGE RECONSTRUCTION, MLMIR 2018, 2018, 11074 : 75 - 82
  • [7] DEEP BACK PROJECTION FOR SPARSE-VIEW CT RECONSTRUCTION
    Ye, Dong Hye
    Buzzard, Gregery T.
    Ruby, Max
    Bouman, Charles A.
    2018 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2018), 2018, : 1 - 5
  • [8] COMPARISON OF SPARSE-VIEW CT IMAGE RECONSTRUCTION ALGORITHMS
    Zhang, Shu
    Xia, Youshen
    Zou, Changzhong
    PROCEEDINGS OF 2016 INTERNATIONAL CONFERENCE ON AUDIO, LANGUAGE AND IMAGE PROCESSING (ICALIP), 2016, : 385 - 390
  • [9] Beam Hardening Correction for Sparse-View CT Reconstruction
    Liu, Wenlei
    Rong, Junyan
    Gao, Peng
    Liao, Qimei
    Lu, HongBing
    MEDICAL IMAGING 2015: IMAGE PROCESSING, 2015, 9413
  • [10] Learning Projection Views for Sparse-View CT Reconstruction
    Yang, Liutao
    Ge, Rongjun
    Feng, Shichang
    Zhang, Daoqiang
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 2645 - 2653