Multimodal Integration Learning of Object Manipulation Behaviors using Deep Neural Networks

被引:0
|
作者
Noda, Kuniaki [1 ]
Arie, Hiroaki [1 ]
Suga, Yuki [1 ]
Ogata, Testuya [1 ]
机构
[1] Waseda Univ, Grad Sch Fundamental Sci & Engn, Tokyo, Japan
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a novel computational approach for modeling and generating multiple object manipulation behaviors by a humanoid robot. The contribution of this paper is that deep learning methods are applied not only for multimodal sensor fusion but also for sensory-motor coordination. More specifically, a time-delay deep neural network is applied for modeling multiple behavior patterns represented with multi-dimensional visuomotor temporal sequences. By using the efficient training performance of Hessian-free optimization, the proposed mechanism successfully models six different object manipulation behaviors in a single network. The generalization capability of the learning mechanism enables the acquired model to perform the functions of cross-modal memory retrieval and temporal sequence prediction. The experimental results show that the motion patterns for object manipulation behaviors are successfully generated from the corresponding image sequence, and vice versa. Moreover, the temporal sequence prediction enables the robot to interactively switch multiple behaviors in accordance with changes in the displayed objects.
引用
收藏
页码:1728 / 1733
页数:6
相关论文
共 50 条
  • [21] Space Object Classification Using Deep Convolutional Neural Networks
    Linares, Richard
    Furfaro, Roberto
    [J]. 2016 19TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2016, : 1140 - 1146
  • [22] Multimodal Learning of Keypoint Predictive Models for Visual Object Manipulation
    Bechtle, Sarah
    Das, Neha
    Meier, Franziska
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2023, 39 (02) : 1212 - 1224
  • [23] Deep Neural Networks for Object Enumeration
    Xu, Zihao
    Salloum, Mariam
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 5468 - 5470
  • [24] Object manipulation with a variable-stiffness robotic mechanism using deep neural networks for visual semantics and load estimation
    Bayraktar, Ertugrul
    Yigit, Cihat Bora
    Boyraz, Pinar
    [J]. NEURAL COMPUTING & APPLICATIONS, 2020, 32 (13): : 9029 - 9045
  • [25] Object manipulation with a variable-stiffness robotic mechanism using deep neural networks for visual semantics and load estimation
    Ertugrul Bayraktar
    Cihat Bora Yigit
    Pinar Boyraz
    [J]. Neural Computing and Applications, 2020, 32 : 9029 - 9045
  • [26] Information Graphic Summarization using a Collection of Multimodal Deep Neural Networks
    Kim, Edward
    Onweller, Connor
    McCoy, Kathleen E.
    [J]. 2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 10188 - 10195
  • [27] Optical mode manipulation using deep spatial diffractive neural networks
    Ruan, Zhengsen
    Wang, Bowen
    Zhang, Jinlong
    Cao, Han
    Yang, Ming
    Ma, Wenrui
    Wang, Xun
    Zhang, Yu
    Wang, Jian
    [J]. OPTICS EXPRESS, 2024, 32 (09): : 16212 - 16234
  • [28] CalibDNN: Multimodal Sensor Calibration for Perception Using Deep Neural Networks
    Zhao, Ganning
    Hu, Jiesi
    You, Suya
    Kuo, C-C Jay
    [J]. SIGNAL PROCESSING, SENSOR/INFORMATION FUSION, AND TARGET RECOGNITION XXX, 2021, 11756
  • [29] Robot grasp detection using multimodal deep convolutional neural networks
    Wang, Zhichao
    Li, Zhiqi
    Wang, Bin
    Liu, Hong
    [J]. ADVANCES IN MECHANICAL ENGINEERING, 2016, 8 (09) : 1 - 12
  • [30] Performance Evaluation of Multimodal Deep Learning: Object Identification Using UAV Dataset
    He, Mingju
    Hohil, Myron E.
    LaPeruta, Thomas A.
    Nashed, Kerolos
    Lawrence, Victor
    Yao, Yu-Dong
    [J]. ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING FOR MULTI-DOMAIN OPERATIONS APPLICATIONS III, 2021, 11746