Diffusion of Lithium Ions in Amorphous and Crystalline Poly(ethylene oxide)3:LiCF3SO3 Polymer Electrolytes

被引:35
|
作者
Xue, Sha [1 ]
Liu, Yingdi [2 ]
Li, Yaping [2 ]
Teeters, Dale [3 ,5 ]
Crunkleton, Daniel W. [1 ,4 ,5 ]
Wang, Sanwu [2 ,4 ,5 ]
机构
[1] Univ Tulsa, Russell Sch Chem Engn, Tulsa, OK 74104 USA
[2] Univ Tulsa, Dept Phys & Engn Phys, Tulsa, OK 74104 USA
[3] Univ Tulsa, Dept Chem & Biochem, Tulsa, OK 74104 USA
[4] Univ Tulsa, Tulsa Inst Alternat Energy, Tulsa, OK 74104 USA
[5] Univ Tulsa, Tulsa Inst Nanotechnol, Tulsa, OK 74104 USA
关键词
Polymer electrolytes; Ionic conductivity; Ab initio calculations; Activation energy; Diffusion pathway; TOTAL-ENERGY CALCULATIONS; MOLECULAR-DYNAMICS SIMULATION; AB-INITIO CALCULATIONS; ELASTIC BAND METHOD; CONDUCTION MECHANISMS; TRANSPORT; PEO; COMPLEXES; CLUSTERS; CATION;
D O I
10.1016/j.electacta.2017.03.083
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The PEO3:LiCF3SO3 polymer electrolyte has attracted significant research due to high conductivity and enhanced stability in lithium polymer batteries. Most experimental studies have shown that amorphous PEO lithium salt electrolytes have higher conductivity than the crystalline ones. Other studies, however, have shown that crystalline PEO salt complexes can conduct ions. As a result, further theoretical investigations are warranted to help clarify the issue. In this work, we use density functional theory with the climbing image nudged elastic band method to investigate the atomic-scale mechanism of lithium ion transport in the polymer electrolytes. We also use density functional theory and ab initio molecular dynamics simulations to obtain the amorphous structure of PEO3:LiCF3SO3. The diffusion pathways and activation energies of lithium ions in both crystalline and amorphous PEO3:LiCF3SO3 are determined. In crystalline PEO3:LiCF3SO3, the activation energy for the low-barrier diffusion pathway is approximately 1.0 eV. In the amorphous phase, the value is 0.6 eV. This result would support the experimental observation that amorphous PEO3:LiCF3SO3 has higher ionic conductivity than the crystalline phase. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:122 / 128
页数:7
相关论文
共 50 条
  • [41] Proton NMR study of Rouse dynamics and ideal glass transition temperature of poly(ethylene oxide) LiCF3SO3 complexes
    Ries, ME
    Klein, PG
    Brereton, MG
    Ward, IM
    MACROMOLECULES, 1998, 31 (15) : 4950 - 4956
  • [42] Formation of columnar and cubic liquid crystalline phases in the complex of coil-rod-coil molecule containing poly(ethylene oxide) with LiCF3SO3
    Lee, Myongsoo
    Lee, Dong-Woo
    Cho, Byoung-Ki
    Kim, Heesub
    Zin, Wang-Cheol
    Molecular Crystals and Liquid Crystals Science and Technology Section A: Molecular Crystals and Liquid Crystals, 1999, 330 : 1595 - 1602
  • [43] THERMAL-ANALYSIS AND NMR-STUDY OF A POLY(ETHYLENE OXIDE) COMPLEX ELECTROLYTE - PEO(LICF3SO3)X
    MINIER, M
    BERTHIER, C
    GORECKI, W
    JOURNAL DE PHYSIQUE, 1984, 45 (04): : 739 - 744
  • [45] Transport properties of a high molecular weight poly(propylene oxide)-LiCF3SO3 system
    Doeff, MM
    Georén, P
    Qiao, J
    Kerr, J
    De Jonghe, LC
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (06) : 2024 - 2028
  • [46] Polymer electrolyte poly(ethylene oxide)LiCF3SO3 studied by solid-state 13C NMR spectroscopy and ab initio calculations
    Spevácek, J
    Dybal, J
    MACROMOLECULAR RAPID COMMUNICATIONS, 1999, 20 (08) : 435 - 439
  • [48] POLY(ETHYLENE OXIDE)-CU(CF3SO3)2 POLYMER ELECTROLYTES
    BONINO, F
    CROCE, F
    PANTALONI, S
    PASSERINI, S
    SCROSATI, B
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1987, 134 (8B) : C474 - C474
  • [49] Cation mobility and anion reorientation in lithium trifluoromethane sulfonate, LiCF3SO3
    van Wüllen, L
    Hildebrandt, L
    Jansen, M
    SOLID STATE IONICS, 2005, 176 (15-16) : 1449 - 1456
  • [50] Investigation of the solution condition of lithium electrolyte solutions with LiCF3SO3 salt
    Y. Saito
    H. Yamamoto
    H. Kageyama
    O. Nakamura
    T. Miyoshi
    M. Matsuoka
    Journal of Materials Science, 2000, 35 : 809 - 812