The joint graphical lasso for inverse covariance estimation across multiple classes

被引:578
|
作者
Danaher, Patrick [1 ]
Wang, Pei [2 ]
Witten, Daniela M. [1 ]
机构
[1] Univ Washington, Seattle, WA 98195 USA
[2] Fred Hutchinson Canc Res Ctr, Seattle, WA 98109 USA
基金
美国国家卫生研究院;
关键词
Alternating directions method of multipliers; Gaussian graphical model; Generalized fused lasso; Graphical lasso; Group lasso; High dimensional data; Network estimation; REGRESSION; SELECTION; EXPRESSION; MODEL;
D O I
10.1111/rssb.12033
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the problem of estimating multiple related Gaussian graphical models from a high dimensional data set with observations belonging to distinct classes. We propose the joint graphical lasso, which borrows strength across the classes to estimate multiple graphical models that share certain characteristics, such as the locations or weights of non-zero edges. Our approach is based on maximizing a penalized log-likelihood. We employ generalized fused lasso or group lasso penalties and implement a fast alternating directions method of multipliers algorithm to solve the corresponding convex optimization problems. The performance of the method proposed is illustrated through simulated and real data examples.
引用
收藏
页码:373 / 397
页数:25
相关论文
共 50 条
  • [1] Sparse inverse covariance estimation with the graphical lasso
    Friedman, Jerome
    Hastie, Trevor
    Tibshirani, Robert
    [J]. BIOSTATISTICS, 2008, 9 (03) : 432 - 441
  • [2] Joint estimation of multiple Gaussian graphical models across unbalanced classes
    Shan, Liang
    Kim, Inyoung
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2018, 121 : 89 - 103
  • [3] Joint Estimation of the Two-Level Gaussian Graphical Models Across Multiple Classes
    Shan, Liang
    Qiao, Zhilei
    Cheng, Lulu
    Kim, Inyoung
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2020, 29 (03) : 562 - 579
  • [4] Exact Hybrid Covariance Thresholding for Joint Graphical Lasso
    Tang, Qingming
    Yang, Chao
    Peng, Jian
    Xu, Jinbo
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2015, PT II, 2015, 9285 : 593 - 607
  • [5] graphiclasso: Graphical lasso for learning sparse inverse-covariance matrices
    Dallakyan, Aramayis
    [J]. STATA JOURNAL, 2022, 22 (03): : 625 - 642
  • [6] Weighted Fused Pathway Graphical Lasso for Joint Estimation of Multiple Gene Networks
    Wu, Nuosi
    Huang, Jiang
    Zhang, Xiao-Fei
    Ou-Yang, Le
    He, Shan
    Zhu, Zexuan
    Xie, Weixin
    [J]. FRONTIERS IN GENETICS, 2019, 10
  • [7] Coordinate descent algorithm for covariance graphical lasso
    Wang, Hao
    [J]. STATISTICS AND COMPUTING, 2014, 24 (04) : 521 - 529
  • [8] Coordinate descent algorithm for covariance graphical lasso
    Hao Wang
    [J]. Statistics and Computing, 2014, 24 : 521 - 529
  • [9] Joint estimation of multiple graphical models
    Guo, Jian
    Levina, Elizaveta
    Michailidis, George
    Zhu, Ji
    [J]. BIOMETRIKA, 2011, 98 (01) : 1 - 15
  • [10] Improving the Graphical Lasso Estimation for the Precision Matrix Through Roots of the Sample Covariance Matrix
    Avagyan, Vahe
    Alonso, Andres M.
    Nogales, Francisco J.
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2017, 26 (04) : 865 - 872