A q-FRACTIONAL APPROACH TO THE REGULAR STURM-LIOUVILLE PROBLEMS

被引:0
|
作者
Al-Towailb, Maryam A. [1 ]
机构
[1] King Saud Univ, Fac Appl Studies & Community Serv, Dept Nat & Engn Sci, Riyadh, Saudi Arabia
关键词
Q-DIFFERENCE EQUATIONS; SAMPLING THEORY;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study the regular q-fractional Sturm-Liouville problems that include the right-sided Caputo q-fractional derivative and the left-sided Riema nn-Liouville q-fractional derivative of the same order, alpha epsilon (0,1). We prove properties of the eigenvalues and the eigenfunctions in a certain Hilbert space. We use a fixed point theorem for proving the existence and uniqueness of the eigenfunctions. We also present an example involving little q-Legendre polynomials.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Conformable fractional Sturm-Liouville problems on time scales
    Allahverdiev, Bilender P.
    Tuna, Huseyin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (04) : 2299 - 2314
  • [32] Discontinuous fractional Sturm-Liouville problems with transmission conditions
    Akdogan, Zulfigar
    Yakar, Ali
    Demirci, Mustafa
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 350 : 1 - 10
  • [33] Some results on the fractional order Sturm-Liouville problems
    Ru, Yuanfang
    Wang, Fanglei
    An, Tianqing
    An, Yukun
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [34] On fractional q-Sturm–Liouville problems
    Zeinab S. I. Mansour
    Journal of Fixed Point Theory and Applications, 2017, 19 : 1591 - 1612
  • [35] Fractional Sturm-Liouville problem
    Klimek, M.
    Agrawal, O. P.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (05) : 795 - 812
  • [36] (p, q)-Sturm-Liouville problems and their orthogonal solutions
    Soleyman, F.
    Sadjang, P. Njionou
    Masjed-Jamei, M.
    Area, I.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (18) : 8997 - 9009
  • [37] Existence of solutions for infinite systems of regular fractional Sturm-Liouville problems in the spaces of tempered sequences
    Prasad, K. Rajendra
    Khuddush, Mahammad
    Leela, D.
    TBILISI MATHEMATICAL JOURNAL, 2020, 13 (04) : 193 - 209
  • [38] Regular approximation of singular Sturm-Liouville problems with transmission conditions
    Zhang, Maozhu
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 247 : 511 - 520
  • [39] Asymptotic approximations of eigenvalues and eigenfunctions for regular Sturm-Liouville problems
    Coskun, Haskiz
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2006, 36 (03) : 867 - 883
  • [40] Spectral theory of Sturm-Liouville operators approximation by regular problems
    Weidmann, J
    Sturm-Liouville Theory: Past and Present, 2005, : 75 - 98