Aggregation and sparsity via l1 penalized least squares

被引:39
|
作者
Bunea, Florentina [1 ]
Tsybakov, Alexandre B.
Wegkamp, Marten H.
机构
[1] Florida State Univ, Dept Stat, Tallahassee, FL 32306 USA
[2] Univ Paris 06, Lab Probabilites & Modeles Aleatoires, F-75252 Paris 05, France
[3] Inst Informat Transmiss Problems, Moscow, Russia
来源
LEARNING THEORY, PROCEEDINGS | 2006年 / 4005卷
关键词
D O I
10.1007/11776420_29
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper shows that near optimal rates of aggregation and adaptation to unknown sparsity can be simultaneously achieved via, penalized least squares in a nonparametric regression setting. The main tool is a novel oracle inequality on the sum between the empirical squared loss of the penalized least squares estimate and a term reflecting the sparsity of the unknown regression function.
引用
收藏
页码:379 / 391
页数:13
相关论文
共 50 条
  • [31] Consistency of l1 penalized negative binomial regressions
    Xie, Fang
    Xiao, Zhijie
    [J]. STATISTICS & PROBABILITY LETTERS, 2020, 165
  • [32] COMPACT SUPPORT OF L1 PENALIZED VARIATIONAL PROBLEMS
    Siegel, Jonathan
    Tekin, Omer
    [J]. COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2017, 15 (06) : 1771 - 1790
  • [33] Least angle and l(1) penalized regression: A review
    Hesterberg, Tim
    Choi, Nam Hee
    Meier, Lukas
    Fraley, Chris
    [J]. STATISTICS SURVEYS, 2008, 2 : 61 - 93
  • [34] HYPERSPECTRAL UNMIXING VIA L1/4 SPARSITY-CONSTRAINED MULTILAYER NMF
    Zhang, Zihan
    Wang, Qi
    Yuan, Yuan
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 2143 - 2146
  • [35] Penalized least squares estimation with weakly dependent data
    Fan JianQing
    Qi Lei
    Tong Xin
    [J]. SCIENCE CHINA-MATHEMATICS, 2016, 59 (12) : 2335 - 2354
  • [36] Penalized least squares estimation with weakly dependent data
    FAN JianQing
    QI Lei
    TONG Xin
    [J]. Science China Mathematics, 2016, 59 (12) : 2335 - 2354
  • [37] Misparametrization subsets for penalized least squares model selection
    Guyon X.
    Hardouin C.
    [J]. Statistical Inference for Stochastic Processes, 2014, 17 (3) : 283 - 294
  • [38] Penalized Least Squares for Smoothing Financial Time Series
    Letchford, Adrian
    Gao, Junbin
    Zheng, Lihong
    [J]. AI 2011: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2011, 7106 : 72 - 81
  • [39] Knot selection for least-squares and penalized splines
    Spiriti, Steven
    Eubank, Randall
    Smith, Philip W.
    Young, Dennis
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2013, 83 (06) : 1020 - 1036
  • [40] Generalized Penalized Least Squares and Its Statistical Characteristics
    DING Shijun TAO Benzao
    [J]. Geo-spatial Information Science, 2006, (04) : 255 - 259