Aggregation and sparsity via l1 penalized least squares

被引:39
|
作者
Bunea, Florentina [1 ]
Tsybakov, Alexandre B.
Wegkamp, Marten H.
机构
[1] Florida State Univ, Dept Stat, Tallahassee, FL 32306 USA
[2] Univ Paris 06, Lab Probabilites & Modeles Aleatoires, F-75252 Paris 05, France
[3] Inst Informat Transmiss Problems, Moscow, Russia
来源
LEARNING THEORY, PROCEEDINGS | 2006年 / 4005卷
关键词
D O I
10.1007/11776420_29
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper shows that near optimal rates of aggregation and adaptation to unknown sparsity can be simultaneously achieved via, penalized least squares in a nonparametric regression setting. The main tool is a novel oracle inequality on the sum between the empirical squared loss of the penalized least squares estimate and a term reflecting the sparsity of the unknown regression function.
引用
收藏
页码:379 / 391
页数:13
相关论文
共 50 条
  • [1] DISCRIMINANT AND SPARSITY BASED LEAST SQUARES REGRESSION WITH l1 REGULARIZATION FOR FEATURE REPRESENTATION
    Zhao, Shuping
    Zhang, Bob
    Li, Shuyi
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 1504 - 1508
  • [2] Combined l1 and Greedy l0 Penalized Least Squares for Linear Model Selection
    Pokarowski, Piotr
    Mielniczuk, Jan
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2015, 16 : 961 - 992
  • [3] A Multilevel Iterated-Shrinkage Approach to l1 Penalized Least-Squares Minimization
    Treister, Eran
    Yavneh, Irad
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (12) : 6319 - 6329
  • [4] Improved Convergence for l∞ and l1 Regression via Iteratively Reweighted Least Squares
    Ene, Alina
    Vladu, Adrian
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [5] On denoising via penalized least-squares rules
    Gudmundson, Erik
    Stoica, Petre
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 3705 - 3708
  • [6] Least-squares RTM with L1 norm regularisation
    Wu, Di
    Yao, Gang
    Cao, Jingjie
    Wang, Yanghua
    [J]. JOURNAL OF GEOPHYSICS AND ENGINEERING, 2016, 13 (05) : 666 - 673
  • [7] Variable selection in spatial regression via penalized least squares
    Wang, Haonan
    Zhu, Jun
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2009, 37 (04): : 607 - 624
  • [8] Density Estimation by Total Variation Penalized Likelihood Driven by the Sparsity l1 Information Criterion
    Sardy, Sylvain
    Tseng, Paul
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2010, 37 (02) : 321 - 337
  • [9] A recursive least squares algorithm with l1 regularization for sparse representation
    Liu, Di
    Baldi, Simone
    Liu, Quan
    Yu, Wenwu
    [J]. SCIENCE CHINA-INFORMATION SCIENCES, 2023, 66 (02)
  • [10] L1 least squares for sparse high-dimensional LDA
    Li, Yanfang
    Jia, Jinzhu
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (01): : 2499 - 2518