*-Ricci tensor on almost Kenmotsu 3-manifolds

被引:0
|
作者
Dey, Dibakar [1 ]
Majhi, Pradip [1 ]
机构
[1] Univ Calcutta, Dept Pure Math, 35 Ballygunge Circular Rd, Kolkata 700019, W Bengal, India
关键词
Almost Kenmotsu manifolds; *-Ricci tensor; non-unimodular Lie group; parallel *-Ricci tensor; eta-parallel *-Ricci tensor;
D O I
10.1142/S0219887820501960
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we obtain the expressions of the *-Ricci operator of a three-dimensional almost Kenmotsu manifold M-3 and find that the *-Ricci tensor is not symmetric for M-3. We obtain a necessary and sufficient condition for the *-Ricci tensor to be symmetric and proved that if the *-Ricci tensor of a non-Kenmotsu almost Kenmotsu 3-h-manifold M-3 is symmetric, then M-3 is locally isometric to a three-dimensional non-unimodular Lie group equipped with a left invariant non-Kenmotsu almost Kenmotsu structure. Further, it is shown that the *-Ricci tensor of a non-Kenmotsu almost Kenmotsu 3-manifold M-3 is parallel if and only if M-3 is *-Ricci flat. In addition, M-3 satisfying del(xi)h = 0 is locally isometric to H-2(-4) x R. Finally, we discuss about eta-parallel *-Ricci tensor on almost Kenmotsu 3-manifolds.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Almost Ricci-Yamabe solitons on Almost Kenmotsu manifolds
    Khatri, Mohan
    Singh, Jay Prakash
    [J]. ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2023, 16 (08)
  • [22] Remarks on Almost Cosymplectic 3-Manifolds with RICCI Operators
    Pan, Quanxiang
    Wang, Yajie
    [J]. JOURNAL OF MATHEMATICS, 2020, 2020
  • [23] RICCI ρ-SOLITONS ON 3-DIMENSIONAL η-EINSTEIN ALMOST KENMOTSU MANIFOLDS
    Azami, Shahroud
    Fasihi-Ramandi, Ghodratallah
    [J]. COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 35 (02): : 613 - 623
  • [24] On *-Conformal Ricci Solitons on a Class of Almost Kenmotsu Manifolds
    Majhi, Pradip
    Dey, Dibakar
    [J]. KYUNGPOOK MATHEMATICAL JOURNAL, 2021, 61 (04): : 781 - 790
  • [25] Ricci Semisymmetric Almost Kenmotsu Manifolds with Nullity Distributions
    Deshmukh, Sharief
    De, Uday Chand
    Zhao, Peibiao
    [J]. FILOMAT, 2018, 32 (01) : 179 - 186
  • [26] A study of conformal almost Ricci solitons on Kenmotsu manifolds
    Sarkar, Sumanjit
    Dey, Santu
    Bhattacharyya, Arindam
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2023, 20 (04)
  • [27] Ricci-Yamabe Solitons and Gradient Ricci-Yamabe Solitons on Kenmotsu 3-manifolds
    Sardar, Arpan
    Sarkar, Avijit
    [J]. KYUNGPOOK MATHEMATICAL JOURNAL, 2021, 61 (04): : 813 - 822
  • [28] Almost Kenmotsu 3-Manifolds Satisfying Some Generalized Nullity Conditions
    Wang, Wenjie
    Liu, Ximin
    [J]. FILOMAT, 2018, 32 (01) : 197 - 206
  • [29] GRADIENT RICCI ALMOST SOLITONS ON TWO CLASSES OF ALMOST KENMOTSU MANIFOLDS
    Wang, Yaning
    [J]. JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2016, 53 (05) : 1101 - 1114
  • [30] Characterization of Almost η-Ricci–Yamabe Soliton and Gradient Almost η-Ricci–Yamabe Soliton on Almost Kenmotsu Manifolds
    Somnath MONDAL
    Santu DEY
    Arindam BHATTACHARYYA
    [J]. Acta Mathematica Sinica,English Series, 2023, (04) : 728 - 748