TWO FULLY DISCRETE SCHEMES FOR FRACTIONAL DIFFUSION AND DIFFUSION-WAVE EQUATIONS WITH NONSMOOTH DATA

被引:211
|
作者
Jin, Bangti [1 ]
Lazarov, Raytcho [2 ]
Zhou, Zhi [2 ,3 ]
机构
[1] UCL, Dept Comp Sci, Gower St, London WC1E 6BT, England
[2] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[3] Columbia Univ, Dept Appl Math & Appl Phys, New York, NY 10027 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2016年 / 38卷 / 01期
基金
英国工程与自然科学研究理事会;
关键词
fractional diffusion; diffusion wave; finite element method; convolution quadrature; error estimate; FINITE-ELEMENT-METHOD; ORDER PARABOLIC EQUATIONS; INTEGRODIFFERENTIAL EQUATION; CONVOLUTION QUADRATURE; EVOLUTION EQUATION; DIFFERENCE METHOD; GALERKIN METHOD; ERROR ANALYSIS; APPROXIMATIONS; STABILITY;
D O I
10.1137/140979563
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider initial/boundary value problems for the subdiffusion and diffusion-ave equations involving a Caputo fractional derivative in time. We develop two fully discrete schemes based on the piecewise linear Galerkin finite element method in space and convolution quadrature in time with the generating function given by the backward Euler method/second-order backward difference method, and establish error estimates optimal with respect to the regularity of problem data. These two schemes are first-and second-order accurate in time for both smooth and nonsmooth data. Extensive numerical experiments for two-dimensional problems confirm the convergence analysis and robustness of the schemes with respect to data regularity.
引用
收藏
页码:A146 / A170
页数:25
相关论文
共 50 条
  • [1] On three explicit difference schemes for fractional diffusion and diffusion-wave equations
    Quintana Murillo, Joaquin
    Bravo Yuste, Santos
    [J]. PHYSICA SCRIPTA, 2009, T136
  • [2] Analysis of a Time-Stepping Discontinuous Galerkin Method for Fractional Diffusion-Wave Equations with Nonsmooth Data
    Li, Binjie
    Wang, Tao
    Xie, Xiaoping
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2020, 82 (01)
  • [3] Analysis of a Time-Stepping Discontinuous Galerkin Method for Fractional Diffusion-Wave Equations with Nonsmooth Data
    Binjie Li
    Tao Wang
    Xiaoping Xie
    [J]. Journal of Scientific Computing, 2020, 82
  • [4] Scaling laws for fractional, diffusion-wave equations with singular data
    Anh, VV
    Leonenko, NN
    [J]. STATISTICS & PROBABILITY LETTERS, 2000, 48 (03) : 239 - 252
  • [5] Two finite difference schemes for time fractional diffusion-wave equation
    Huang, Jianfei
    Tang, Yifa
    Vazquez, Luis
    Yang, Jiye
    [J]. NUMERICAL ALGORITHMS, 2013, 64 (04) : 707 - 720
  • [6] ON AN EXPLICIT DIFFERENCE METHOD FOR FRACTIONAL DIFFUSION AND DIFFUSION-WAVE EQUATIONS
    Quintana Murillo, Joaquin
    Bravo Yuste, Santos
    [J]. PROCEEDINGS OF ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, VOL 4, PTS A-C, 2010, : 1031 - 1036
  • [7] Two finite difference schemes for time fractional diffusion-wave equation
    Jianfei Huang
    Yifa Tang
    Luis Vázquez
    Jiye Yang
    [J]. Numerical Algorithms, 2013, 64 : 707 - 720
  • [8] A fully discrete direct discontinuous Galerkin Method for the fractional diffusion-wave equation
    Huang, Chaobao
    An, Na
    Yu, Xijun
    [J]. APPLICABLE ANALYSIS, 2018, 97 (04) : 659 - 675
  • [9] A fully discrete difference scheme for a diffusion-wave system
    Sun, ZZ
    Wu, XN
    [J]. APPLIED NUMERICAL MATHEMATICS, 2006, 56 (02) : 193 - 209
  • [10] TWO-DIMENSIONAL FRACTIONAL EULER POLYNOMIALS METHOD FOR FRACTIONAL DIFFUSION-WAVE EQUATIONS
    Balachandar, S. Raja
    Venkatesh, S. G.
    Balasubramanian, K.
    Uma, D.
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (04)