Labeled Phrase Latent Dirichlet Allocation and its online learning algorithm

被引:7
|
作者
Tang, Yi-Kun [1 ,2 ]
Mao, Xian-Ling [1 ]
Huang, Heyan [1 ]
机构
[1] Beijing Inst Technol, Sch Comp Sci & Technol, Beijing Engn Res Ctr High Volume Language Informa, Beijing 100081, Peoples R China
[2] Minjiang Univ, Fujian Prov Key Lab Informat Proc & Intelligent C, Fuzhou 350121, Fujian, Peoples R China
基金
美国国家科学基金会;
关键词
Topic model; Labeled Phrase LDA; Batch Labeled Phrase LDA; Online Labeled Phrase LDA; TOPIC MODELS;
D O I
10.1007/s10618-018-0555-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
There is a mass of user-marked text data on the Internet, such as web pages with categories, papers with corresponding keywords, and tweets with hashtags. In recent years, supervised topic models, such as Labeled Latent Dirichlet Allocation, have been widely used to discover the abstract topics in labeled text corpora. However, none of these topic models have taken into consideration word order under the bag-of-words assumption, which will obviously lose a lot of semantic information. In this paper, in order to synchronously model semantical label information and word order, we propose a novel topic model, called Labeled Phrase Latent Dirichlet Allocation (LPLDA), which regards each document as a mixture of phrases and partly considers the word order. In order to obtain the parameter estimation for the proposed LPLDA model, we develop a batch inference algorithm based on Gibbs sampling technique. Moreover, to accelerate the LPLDA's processing speed for large-scale stream data, we further propose an online inference algorithm for LPLDA. Extensive experiments were conducted among LPLDA and four state-of-the-art baselines. The results show (1) batch LPLDA significantly outperforms baselines in terms of case study, perplexity and scalability, and the third party task in most cases; (2) the online algorithm for LPLDA is obviously more efficient than batch method under the premise of good results.
引用
收藏
页码:885 / 912
页数:28
相关论文
共 50 条
  • [41] Distributed Latent Dirichlet Allocation on Streams
    Guo, Yunyan
    Li, Jianzhong
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2022, 16 (01)
  • [42] Parallel Latent Dirichlet Allocation on GPUs
    Moon, Gordon E.
    Nisa, Israt
    Sukumaran-Rajam, Aravind
    Bandyopadhyay, Bortik
    Parthasarathy, Srinivasan
    Sadayappan, P.
    COMPUTATIONAL SCIENCE - ICCS 2018, PT II, 2018, 10861 : 259 - 272
  • [43] Selecting Priors for Latent Dirichlet Allocation
    Syed, Shaheen
    Spruit, Marco
    2018 IEEE 12TH INTERNATIONAL CONFERENCE ON SEMANTIC COMPUTING (ICSC), 2018, : 194 - 202
  • [44] Crowd labeling latent Dirichlet allocation
    Luca Pion-Tonachini
    Scott Makeig
    Ken Kreutz-Delgado
    Knowledge and Information Systems, 2017, 53 : 749 - 765
  • [45] Latent IBP Compound Dirichlet Allocation
    Archambeau, Cedric
    Lakshminarayanan, Balaji
    Bouchard, Guillaume
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (02) : 321 - 333
  • [46] Slow mixing for Latent Dirichlet Allocation
    Jonasson, Johan
    STATISTICS & PROBABILITY LETTERS, 2017, 129 : 96 - 100
  • [47] INFERENCE IN SUPERVISED LATENT DIRICHLET ALLOCATION
    Lakshminarayanan, Balaji
    Raich, Raviv
    2011 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2011,
  • [48] Bibliometric Analysis of Latent Dirichlet Allocation
    Garg, Mohit
    Rangra, Priya
    DESIDOC JOURNAL OF LIBRARY & INFORMATION TECHNOLOGY, 2022, 42 (02): : 105 - 113
  • [49] Topic Selection in Latent Dirichlet Allocation
    Wang, Biao
    Liu, Zelong
    Li, Maozhen
    Liu, Yang
    Qi, Man
    2014 11TH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (FSKD), 2014, : 756 - 760
  • [50] Crowd labeling latent Dirichlet allocation
    Pion-Tonachini, Luca
    Makeig, Scott
    Kreutz-Delgado, Ken
    KNOWLEDGE AND INFORMATION SYSTEMS, 2017, 53 (03) : 749 - 765