A latent variable regression model for capture-recapture data

被引:4
|
作者
Thandrayen, Joanne [1 ]
Wang, Yan [2 ]
机构
[1] Univ S Australia, Sch Math & Stat, Adelaide, SA 5000, Australia
[2] RMIT Univ, Sch Math & Geospatial Sci, Melbourne, Vic 3000, Australia
关键词
POPULATION-SIZE; INTERVAL ESTIMATION; CLOSED POPULATION; MARGINAL MODELS; CATCHABILITY; ESTIMATOR; VARY;
D O I
10.1016/j.csda.2009.01.014
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Capture-recapture methods are used to estimate the prevalence of diseases in the field of epidemiology. The information used for estimation purposes are available from multiple lists, whereby giving rise to the problems of list dependence and heterogeneity. In this paper, modelling is focused on the heterogeneity part. We present a new binomial latent class model which takes into account both the observed and unobserved heterogeneity within capture-recapture data. We adopt the conditional likelihood approach and perform estimation via the EM algorithm. We also derive the mathematical expressions for the computation of the standard error of the unknown population size. An application to data on diabetes patients in a town in northern Italy is discussed. (c) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:2740 / 2746
页数:7
相关论文
共 50 条
  • [1] A regression estimator for mixed binomial capture-recapture data
    Rocchetti, Irene
    Alfo, Marco
    Boehning, Dankmar
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2014, 145 : 165 - 178
  • [2] A hierarchical model for spatial capture-recapture data
    Royle, J. Andrew
    Young, Kevin V.
    [J]. ECOLOGY, 2008, 89 (08) : 2281 - 2289
  • [3] Semiparametric regression in capture-recapture modeling
    Gimenez, O.
    Crainiceanu, C.
    Barbraud, C.
    Jenouvrier, S.
    Morgan, B. J. T.
    [J]. BIOMETRICS, 2006, 62 (03) : 691 - 698
  • [4] Mixture Regression Models for Closed Population Capture-Recapture Data
    Tounkara, Fode
    Rivest, Louis-Paul
    [J]. BIOMETRICS, 2015, 71 (03) : 721 - 730
  • [5] Bayesian latent class models for capture-recapture in the presence of missing data
    Di Cecco, Davide
    Di Zio, Marco
    Liseo, Brunero
    [J]. BIOMETRICAL JOURNAL, 2020, 62 (04) : 957 - 969
  • [6] A class of latent marginal models for capture-recapture data with continuous covariates
    Bartolucci, Francesco
    Forcina, Antonio
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2006, 101 (474) : 786 - 794
  • [7] MODEL SELECTION STRATEGY IN THE ANALYSIS OF CAPTURE-RECAPTURE DATA
    BURNHAM, KP
    WHITE, GC
    ANDERSON, DR
    [J]. BIOMETRICS, 1995, 51 (03) : 888 - 898
  • [8] A hierarchical model for spatial capture-recapture data: comment
    Marques, Tiago A.
    Thomas, Len
    Royle, J. Andrew
    [J]. ECOLOGY, 2011, 92 (02) : 526 - 528
  • [9] AIC MODEL SELECTION IN OVERDISPERSED CAPTURE-RECAPTURE DATA
    ANDERSON, DR
    BURNHAM, KP
    WHITE, GC
    [J]. ECOLOGY, 1994, 75 (06) : 1780 - 1793
  • [10] APPLICATIONS OF A MULTINOMIAL CAPTURE-RECAPTURE MODEL TO EPIDEMIOLOGICAL DATA
    WITTES, JT
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1974, 69 (345) : 93 - 97