A regression estimator for mixed binomial capture-recapture data

被引:7
|
作者
Rocchetti, Irene
Alfo, Marco [1 ]
Boehning, Dankmar [2 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Sci Stat, Rome, Italy
[2] Univ Southampton, Southampton Stat Sci Res Inst S3RI, Southampton SO9 5NH, Hants, England
关键词
Beta-binomial; Weighted regression; Zero-truncation; ESTIMATING POPULATION-SIZE; CLOSED POPULATION; MIXTURE-MODELS; PROBABILITIES VARY; HETEROGENEITY; PERFORMANCE;
D O I
10.1016/j.jspi.2013.08.010
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Mixed binomial models are frequently used to provide estimates for the unknown size of a partially observed population when capture-recapture data are available through a known, finite, number of identification (sampling) sources. In this context, inherently major problems may be the lack of identifiability of the mixing distribution (Link, 2003) and boundary problems in ML estimation for mixed binomial models (such as the beta-binomial or finite mixture of binomials), see e.g. Dorazio and Royle (2003, 2005). To solve these problems, we introduce a novel regression estimator based on observed ratios of successive capture frequencies. Both simulations and real data examples show that the proposed estimator frequently leads to under-estimate the true population size, but with a smaller bias and a lower variability when compared to other well-known estimators. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:165 / 178
页数:14
相关论文
共 50 条
  • [1] A latent variable regression model for capture-recapture data
    Thandrayen, Joanne
    Wang, Yan
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (07) : 2740 - 2746
  • [2] On the Turing estimator in capture-recapture count data under the geometric distribution
    Anan, Orasa
    Bohning, Dankmar
    Maruotti, Antonello
    [J]. METRIKA, 2019, 82 (02) : 149 - 172
  • [3] Semiparametric regression in capture-recapture modeling
    Gimenez, O.
    Crainiceanu, C.
    Barbraud, C.
    Jenouvrier, S.
    Morgan, B. J. T.
    [J]. BIOMETRICS, 2006, 62 (03) : 691 - 698
  • [4] Mixture Regression Models for Closed Population Capture-Recapture Data
    Tounkara, Fode
    Rivest, Louis-Paul
    [J]. BIOMETRICS, 2015, 71 (03) : 721 - 730
  • [5] Estimating population sizes for capture-recapture sampling with binomial mixtures
    Mao, Chang Xuan
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (11) : 5211 - 5219
  • [6] Population size estimation and heterogeneity in capture-recapture data: a linear regression estimator based on the Conway-Maxwell-Poisson distribution
    Anan, Orasa
    Bohning, Dankmar
    Maruotti, Antonello
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2017, 26 (01): : 49 - 79
  • [7] Data fusion of distance sampling and capture-recapture data
    Mohankumar, Narmadha M.
    Hefley, Trevor J.
    Silber, Katy M.
    Boyle, W. Alice
    [J]. SPATIAL STATISTICS, 2023, 55
  • [8] Mixture models for capture-recapture count data
    Böhning D.
    Dietz E.
    Kuhnert R.
    Schön D.
    [J]. Statistical Methods and Applications, 2005, 14 (1) : 29 - 43
  • [9] Performance of spatial capture-recapture models with repurposed data: Assessing estimator robustness for retrospective applications
    Smith, Jennifer B.
    Stevens, Bryan S.
    Etter, Dwayne R.
    Williams, David M.
    [J]. PLOS ONE, 2020, 15 (08):
  • [10] Estimation of Covariate Distribution with Capture-Recapture Data
    Duan, Xiaogang
    Liu, Liping
    Zhao, Ping
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2009, 38 (20) : 3705 - 3712