Graphene/hexagonal boron nitride/graphene nanopore for electrical detection of single molecules

被引:17
|
作者
He, Yuhui [1 ]
Tsutsui, Makusu [1 ]
Ryuzaki, Sou [1 ]
Yokota, Kazumichi [1 ]
Taniguchi, Masateru [1 ]
Kawai, Tomoji [1 ]
机构
[1] Osaka Univ, Inst Sci & Ind Res, Ibaraki, Osaka 5670047, Japan
基金
日本学术振兴会;
关键词
ABC stacking; graphene; hexagonal boron nitride; nonequilibrium Green's function; transport properties; ELECTRONIC TRANSPORT; GRAPHENE NANOPORES; DNA TRANSLOCATION; STACKED GRAPHENE; NITRIDE; NUCLEOTIDES; GROWTH;
D O I
10.1038/am.2014.29
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Graphene nanopore device, since its proposal, has witnessed tremendous progress toward the goal of single-molecule detection. However, one central challenge of preparing electrodes with nanometer precision on the graphene remains unsolved. Here we show theoretically the feasibility of graphene/hexagonal BN (h-BN)/graphene structure where top graphene layer acts as one electrical contact while the bottom layer as the other. Based on quantum chemistry/nonequilibrium Green's function investigation, we give clear physical pictures why ABC stacking of the above heterogeneous layers results in excellent insulating of the top and bottom graphene electrodes. On the other hand, when the target molecule is inside the nanopore the background conductance through the h-BN dielectric will not keep decreasing even though more layers of h-BN are inside the nanopore. The mechanism is illustrated as that the presence of the molecule will enhance the vertical transmission through the h-BN dielectric via quantum interference. We employ a single-level molecule model, and show quantitatively that the discussed effect can be utilized as a powerful signal amplifier for the molecule conductance, thus enhancing the measurability of single molecules by 3-4 orders.
引用
收藏
页码:e104 / e104
页数:9
相关论文
共 50 条
  • [21] Li intercalation at graphene/hexagonal boron nitride interfaces
    Shirodkar, Sharmila N.
    Kaxiras, Efthimios
    PHYSICAL REVIEW B, 2016, 93 (24)
  • [22] Anomalous paramagnetism in graphene on hexagonal boron nitride substrates
    Ding, Xuli
    Sun, Hong
    Xie, Xiaoming
    Ren, Haicang
    Huang, Fuqiang
    Jiang, Mianheng
    PHYSICAL REVIEW B, 2011, 84 (17)
  • [23] Fractional Hofstadter States in Graphene on Hexagonal Boron Nitride
    DaSilva, Ashley M.
    Jung, Jeil
    MacDonald, Allan H.
    PHYSICAL REVIEW LETTERS, 2016, 117 (03)
  • [24] Graphene, hexagonal boron nitride, and their heterostructures: properties and applications
    Wang, Jingang
    Ma, Fengcai
    Sun, Mengtao
    RSC ADVANCES, 2017, 7 (27) : 16801 - 16822
  • [25] Coating performance of hexagonal boron nitride and graphene layers
    Li, Xuemei
    Long, Yuyang
    Ma, Limin
    Li, Jidong
    Yin, Jun
    Guo, Wanlin
    2D MATERIALS, 2021, 8 (03):
  • [26] Synthesis and characterization of graphene nanoribbons on hexagonal boron nitride
    Chen Ling-Xiu
    Wang Hui-Shan
    Jiang Cheng-Xin
    Chen Chen
    Wang Hao-Min
    ACTA PHYSICA SINICA, 2019, 68 (16)
  • [27] Etched graphene quantum dots on hexagonal boron nitride
    Engels, S.
    Epping, A.
    Volk, C.
    Korte, S.
    Voigtlaender, B.
    Watanabe, K.
    Taniguchi, T.
    Trellenkamp, S.
    Stampfer, C.
    APPLIED PHYSICS LETTERS, 2013, 103 (07)
  • [28] Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial
    Dai, S.
    Ma, Q.
    Liu, M. K.
    Andersen, T.
    Fei, Z.
    Goldflam, M. D.
    Wagner, M.
    Watanabe, K.
    Taniguchi, T.
    Thiemens, M.
    Keilmann, F.
    Janssen, G. C. A. M.
    Zhu, S-E.
    Jarillo-Herrero, P.
    Fogler, M. M.
    Basov, D. N.
    NATURE NANOTECHNOLOGY, 2015, 10 (08) : 682 - 686
  • [29] Electrically dependent bandgaps in graphene on hexagonal boron nitride
    Kaplan, D.
    Recine, G.
    Swaminathan, V.
    APPLIED PHYSICS LETTERS, 2014, 104 (13)
  • [30] Origin of band gaps in graphene on hexagonal boron nitride
    Jeil Jung
    Ashley M. DaSilva
    Allan H. MacDonald
    Shaffique Adam
    Nature Communications, 6