Exact Solutions of a Nonlinear Equation of the Theory of Spin Waves

被引:0
|
作者
Aristov, A. I. [1 ,2 ]
Kholomeeva, A. A. [1 ,2 ]
机构
[1] Lomonosov Moscow State Univ, Moscow 119991, Russia
[2] Russian Acad Sci, Fed Res Ctr Comp Sci & Control, Moscow 119333, Russia
基金
俄罗斯科学基金会;
关键词
D O I
10.1134/S00122661220100032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Families of exact solutions of a nonlinear equation from the theory of spin waves are constructed that describe a nonstationary process in a magnetic medium with spatial dispersion. The group properties of this equation and the corresponding stationary equation are investigated. A theorem on the nonuniqueness of the classical solution of the Cauchy problem for the nonlinear equation is proved.
引用
收藏
页码:1318 / 1326
页数:9
相关论文
共 50 条
  • [21] Exact Solutions Superimposed with Nonlinear Plane Waves
    Desale, B. S.
    Sharma, Vivek
    [J]. INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 2016
  • [22] New Exact Solutions for a Nonlinear Lattice Equation
    Wu, Chufen
    Weng, Peixuan
    [J]. SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2009, 33 (03) : 587 - 596
  • [23] On some exact solutions of the nonlinear heat equation
    Kazakov, A. L.
    Orlov, S. S.
    [J]. TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2016, 22 (01): : 112 - 123
  • [24] New exact solutions of a nonlinear integrable equation
    Yildiz, Guldem
    Daghan, Durmus
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (11) : 6761 - 6770
  • [25] Exact solutions of a generalized nonlinear Schrodinger equation
    Zhang, Shaowu
    Yi, Lin
    [J]. PHYSICAL REVIEW E, 2008, 78 (02):
  • [26] Exact Solutions of the Equation of a Nonlinear Conductor Model
    Aristov, A. I.
    [J]. DIFFERENTIAL EQUATIONS, 2020, 56 (09) : 1113 - 1118
  • [27] Exact solutions to the nonlinear equation in traffic congestion
    Li, Cheng
    Cao, Damin
    Du, Qing
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [28] EXACT-SOLUTIONS TO A COUPLED NONLINEAR EQUATION
    GUHAROY, C
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1988, 27 (04) : 447 - 450
  • [29] Exact solutions of a nonlocal nonlinear Schrodinger equation
    Gao, Hui
    Xu, Tianzhou
    Yang, Shaojie
    Wang, Gangwei
    [J]. OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2016, 10 (9-10): : 651 - 657
  • [30] A Family of Exact Solutions for the Nonlinear Schrodinger Equation
    HUANG De bin
    [J]. Advances in Manufacturing, 2001, (04) : 273 - 275