Moderate deviation;
quantile regression;
approach of argmins;
exponential tightness;
ASYMPTOTICS;
D O I:
10.1080/03610926.2018.1473429
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
This paper mainly discusses the asymptotic properties of quantile regression processes. In view of the exponential tightness and convexity argument, we prove the quantile regression estimators satisfy the functional moderate deviation principle. This method can be extended to a fair range of different statistical estimation problems such as quantile regression estimators with bridge penalized functions.
机构:
Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Henan, Peoples R ChinaHenan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
Miao, Yu
Liu, Wen-an
论文数: 0引用数: 0
h-index: 0
机构:
Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Henan, Peoples R ChinaHenan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China