Multi-resolution classification network for high-resolution UAV remote sensing images

被引:3
|
作者
Cong, Ming [1 ]
Xi, Jiangbo [1 ]
Han, Ling [1 ]
Gu, Junkai [1 ]
Yang, Ligong [1 ]
Tao, Yiting [2 ]
Xu, Miaozhong [2 ]
机构
[1] Changan Univ, Coll Geol Engn & Geomat, Xian, Peoples R China
[2] Wuhan Univ, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
High-resolution unmanned aerial vehicle; remote sensing image; deep learning neural network; multi-resolution classification; structure defined by sample characteristics (SDSC) network;
D O I
10.1080/10106049.2020.1852614
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
High-resolution unmanned aerial vehicle (UAV) remote sensing images have super-high ground resolution. Although they provide complete and detailed surface observation data for various engineering applications, the extraction of information from complex and diverse surface scenes is challenging. Characterising surface targets with bright colours and different shapes using samples with fixed sizes and neural networks with fixed network structures at a single resolution is difficult. Therefore, a multi-resolution classification network called structure defined by sample characteristics (SDSC) network was designed in this study. After the SDSC network learned the samples using a multi-resolution strategy and the principle of maximum classification probability, the multi-resolution classification results were integrated into the final classification results to improve their credibility and accuracy. The new method has a better cognitive performance and noise resistance, as well as broad application potential, such that it is more suitable for high-spatial resolution UAV remote sensing images.
引用
收藏
页码:3116 / 3140
页数:25
相关论文
共 50 条
  • [21] Scale-Aware Neural Network for Semantic Segmentation of Multi-Resolution Remote Sensing Images
    Wang, Libo
    Zhang, Ce
    Li, Rui
    Duan, Chenxi
    Meng, Xiaoliang
    Atkinson, Peter M.
    REMOTE SENSING, 2021, 13 (24)
  • [22] Semantic Descriptions of High-Resolution Remote Sensing Images
    Wang, Binqiang
    Lu, Xiaoqiang
    Zheng, Xiangtao
    Li, Xuelong
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (08) : 1274 - 1278
  • [23] A Novel Deep Multi-Instance Convolutional Neural Network for Disaster Classification From High-Resolution Remote Sensing Images
    Li, Chengfan
    Zhang, Zixuan
    Liu, Lan
    Kim, Jung Yoon
    Sangaiah, Arun Kumar
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 2098 - 2114
  • [24] Multi-resolution segmentation and shape analysis for remote sensing image classification
    Aksoy, S
    Akçay, HG
    RAST 2005: PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON RECENT ADVANCES IN SPACE TECHNOLOGIES, 2005, : 599 - 604
  • [25] Dynamic High-Resolution Network for Semantic Segmentation in Remote-Sensing Images
    Guo, Shichen
    Yang, Qi
    Xiang, Shiming
    Wang, Pengfei
    Wang, Xuezhi
    REMOTE SENSING, 2023, 15 (09)
  • [26] A Deformable Attention Network for High-Resolution Remote Sensing Images Semantic Segmentation
    Zuo, Renxiang
    Zhang, Guangyun
    Zhang, Rongting
    Jia, Xiuping
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [27] Edge Guidance Network for Semantic Segmentation of High-Resolution Remote Sensing Images
    Ni, Yue
    Liu, Jiahang
    Cui, Jian
    Yang, Yuze
    Wang, Xiaozhen
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 9809 - 9822
  • [28] Multiscale Cascaded Network for the Semantic Segmentation of High-Resolution Remote Sensing Images
    Zhang, Xiaolu
    Wang, Zhaoshun
    Wei, Anlei
    CANADIAN JOURNAL OF REMOTE SENSING, 2023, 49 (01)
  • [29] UNeXt: An Efficient Network for the Semantic Segmentation of High-Resolution Remote Sensing Images
    Chang, Zhanyuan
    Xu, Mingyu
    Wei, Yuwen
    Lian, Jie
    Zhang, Chongming
    Li, Chuanjiang
    SENSORS, 2024, 24 (20)
  • [30] Multi-Scale Attention Network for Building Extraction from High-Resolution Remote Sensing Images
    Chang, Jing
    He, Xiaohui
    Li, Panle
    Tian, Ting
    Cheng, Xijie
    Qiao, Mengjia
    Zhou, Tao
    Zhang, Beibei
    Chang, Ziqian
    Fan, Tingwei
    SENSORS, 2024, 24 (03)