Nano carriers for drug transport across the blood-brain barrier

被引:202
|
作者
Li, Xinming [1 ,2 ]
Tsibouklis, John [2 ]
Weng, Tingting [3 ]
Zhang, Buning
Yin, Guoqiang [1 ]
Feng, Guangzhu [1 ]
Cui, Yingde [1 ]
Savina, Irina N. [4 ]
Mikhalovska, Lyuba I. [4 ]
Sandeman, Susan R. [4 ]
Howel, Carol A. [4 ]
Mikhalovsky, Sergey V. [4 ,5 ]
机构
[1] Zhongkai Univ Agr & Engn, Sch Chem & Chem Engn, 24 Dongsha St, Guangzhou 510225, Guangdong, Peoples R China
[2] Univ Portsmouth, Sch Pharm & Biomed Sci, Portsmouth, Hants, England
[3] Guangdong Petr & Chem Technol Inst, Dept Chem Engn, Foshan, Peoples R China
[4] Univ Brighton, Sch Pharm & Biomol Sci, Brighton, E Sussex, England
[5] Nazarbayev Univ, Sch Engn, Astana, Kazakhstan
关键词
Blood-brain barrier; drug delivery; nanomaterials; SOLID LIPID NANOPARTICLES; PLASMA-PROTEIN ADSORPTION; IN-VITRO ASSESSMENT; TARGETED DELIVERY; POLYMERIC NANOPARTICLES; CNS DELIVERY; ANTICANCER DRUGS; QUANTUM DOTS; MAGNETIC NANOPARTICLES; COLLOIDAL CARRIERS;
D O I
10.1080/1061186X.2016.1184272
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Effective therapy lies in achieving a therapeutic amount of drug to the proper site in the body and then maintaining the desired drug concentration for a sufficient time interval to be clinically effective for treatment. The blood-brain barrier (BBB) hinders most drugs from entering the central nervous system (CNS) from the blood stream, leading to the difficulty of delivering drugs to the brain via the circulatory system for the treatment, diagnosis and prevention of brain diseases. Several brain drug delivery approaches have been developed, such as intracerebral and intracerebroventricular administration, intranasal delivery and blood-to-brain delivery, as a result of transient BBB disruption induced by biological, chemical or physical stimuli such as zonula occludens toxin, mannitol, magnetic heating and ultrasound, but these approaches showed disadvantages of being dangerous, high cost and unsuitability for most brain diseases and drugs. The strategy of vector-mediated blood-to-brain delivery, which involves improving BBB permeability of the drug-carrier conjugate, can minimize side effects, such as being submicrometre objects that behave as a whole unit in terms of their transport and properties, nanomaterials, are promising carrier vehicles for direct drug transport across the intact BBB as a result of their potential to enter the brain capillary endothelial cells by means of normal endocytosis and transcytosis due to their small size, as well as their possibility of being functionalized with multiple copies of the drug molecule of interest. This review provids a concise discussion of nano carriers for drug transport across the intact BBB, various forms of nanomaterials including inorganic/solid lipid/polymeric nanoparticles, nanoemulsions, quantum dots, nanogels, liposomes, micelles, dendrimers, polymersomes and exosomes are critically evaluated, their mechanisms for drug transport across the BBB are reviewed, and the future directions of this area are fully discussed.
引用
收藏
页码:17 / 28
页数:12
相关论文
共 50 条
  • [21] Efflux transport of tolbutamide across the blood-brain barrier
    Takanaga, H
    Murakami, H
    Koyabu, N
    Matsuo, H
    Naito, M
    Tsuruo, T
    Sawada, Y
    JOURNAL OF PHARMACY AND PHARMACOLOGY, 1998, 50 (09) : 1027 - 1033
  • [22] Transport across the Blood-Brain Barrier of Pluronic Leptin
    Price, Tulin O.
    Farr, Susan A.
    Yi, Xiang
    Vinogradov, Serguei
    Batrakova, Elena
    Banks, William A.
    Kabanov, Alexander V.
    JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS, 2010, 333 (01): : 253 - 263
  • [23] Simulations of Active Transport Across the Blood-Brain Barrier
    Jorgensen, Christian
    Ulmschneider, Martin
    Searson, Peter C.
    BIOPHYSICAL JOURNAL, 2020, 118 (03) : 527A - 527A
  • [24] Transport of Amino Acids Across the Blood-Brain Barrier
    Zaragoza, Rosa
    FRONTIERS IN PHYSIOLOGY, 2020, 11
  • [25] Transport of Arylsulfatase A across the Blood-Brain Barrier in Vitro
    Matthes, Frank
    Woelte, Philipp
    Boeckenhoff, Annika
    Huewel, Sabine
    Schulz, Mareike
    Hyden, Pia
    Fogh, Jens
    Gieselmann, Volkmar
    Galla, Hans-Joachim
    Matzner, Ulrich
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2011, 286 (20) : 17487 - 17494
  • [26] Transport of amentoflavone across the blood-brain barrier in vitro
    Gutmann, H
    Bruggisser, R
    Schaffner, W
    Bogman, K
    Botomino, A
    Drewe, J
    PLANTA MEDICA, 2002, 68 (09) : 804 - 807
  • [27] Transport of prion proteins across the blood-brain barrier
    Begley, David J.
    EXPERIMENTAL NEUROLOGY, 2009, 220 (02) : 217 - 218
  • [28] On the transport of ketone bodies across the blood-brain barrier
    Blomqvist, G
    Alvarsson, M
    Grill, V
    vonHeijne, G
    Ingvar, M
    Thorell, JO
    Stone-Elander, S
    Widn, L
    Ekberg, K
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE, 2001, 28 (08): : 1240 - 1240
  • [29] Transport of drugs across the blood-brain barrier by nanoparticles
    Wohlfart, Stefanie
    Gelperina, Svetlana
    Kreuter, Joerg
    JOURNAL OF CONTROLLED RELEASE, 2012, 161 (02) : 264 - 273
  • [30] KINETICS OF SATURABLE TRANSPORT ACROSS THE BLOOD-BRAIN BARRIER
    CUNNINGHAM, VJ
    JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 1985, 5 (03): : 386 - 392