A BIAS-CORRECTED NONPARAMETRIC ENVELOPMENT ESTIMATOR OF FRONTIERS

被引:8
|
作者
Badin, Luiza [2 ,3 ]
Simar, Leopold [1 ]
机构
[1] Univ Catholique Louvain, Inst Stat, B-1348 Louvain, Belgium
[2] Bucharest Acad Econ Studies, Bucharest, Romania
[3] Acad Romana, Gheorghe Mihoc Caius Iacob Inst Math Stat & Appl, Bucharest, Romania
关键词
EFFICIENCY; VARIABLES; MODELS;
D O I
10.1017/S0266466609090513
中图分类号
F [经济];
学科分类号
02 ;
摘要
In efficiency analysis, the production frontier is defined as the set of the most efficient alternatives among all possible combinations in the input-output space. The nonparametric envelopment estimators rely oil the assumption that all the observations fall oil the same side of the frontier. The free disposal hull (FDH) estimator of the attainable set is the smallest free disposal set covering all the observations. By construction, the FDH estimator is an inward-biased estimator of the frontier. The univariate extreme values representation of the FDH allows us to derive a bias-corrected estimator for the frontier. The presentation is based on a probabilistic formulation where the input-output,pairs are realizations of independent random variables drawn from a joint distribution whose support is the production set. The bias-corrected estimator shares the asymptotic properties of the FDH estimator. But in finite samples, Monte Carlo experiments indicate that our bias-corrected estimator reduces significantly not only the bias of the FDH estimator but also its mean squared error, with no computational cost. The method is also illustrated with a real data example. A comparison with the parametric stochastic frontier indicates that the parametric approach can easily fail under wrong specification of the model.
引用
收藏
页码:1289 / 1318
页数:30
相关论文
共 50 条
  • [21] Covariance matrix of the bias-corrected maximum likelihood estimator in generalized linear models
    Gauss M. Cordeiro
    Denise A. Botter
    Alexsandro B. Cavalcanti
    Lúcia P. Barroso
    [J]. Statistical Papers, 2014, 55 : 643 - 652
  • [22] Nonparametric bias-corrected variogram estimation under non-constant trend
    Fernandez-Casal, Ruben
    Francisco-Fernandez, Mario
    [J]. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2014, 28 (05) : 1247 - 1259
  • [23] ASYMPTOTIC THEORY OF A BIAS-CORRECTED LEAST-SQUARES ESTIMATOR IN TRUNCATED REGRESSION
    LAI, TL
    YING, Z
    [J]. STATISTICA SINICA, 1992, 2 (02) : 519 - 539
  • [24] Bias-corrected realized variance
    Yeh, Jin-Huei
    Wang, Jying-Nan
    [J]. ECONOMETRIC REVIEWS, 2019, 38 (02) : 170 - 192
  • [25] A bias-corrected estimator for nonlinear systems with output-error type model structures
    Piga, Dario
    Toth, Roland
    [J]. AUTOMATICA, 2014, 50 (09) : 2373 - 2380
  • [26] STATE DEPENDENCE AND HETEROGENEITY IN HEALTH USING A BIAS-CORRECTED FIXED-EFFECTS ESTIMATOR
    Carro, Jesus M.
    Traferri, Alejandra
    [J]. JOURNAL OF APPLIED ECONOMETRICS, 2014, 29 (02) : 181 - 207
  • [27] A new bias-corrected estimator method in extreme value distributions with small sample size
    Wang, Sirao
    Fang, Kai-Tai
    Ye, Huajun
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2022, 92 (18) : 3862 - 3884
  • [28] The efficiency of bias-corrected estimators for nonparametric kernel estimation based on local estimating equations
    Kauermann, G
    Muller, M
    Carroll, RJ
    [J]. STATISTICS & PROBABILITY LETTERS, 1998, 37 (01) : 41 - 47
  • [29] The efficiency of bias-corrected estimators for nonparametric kernel estimation based on local estimating equations
    Kauermann, G.
    Mueller, M.
    Carroll, R. J.
    [J]. Statistics & Probability Letters, 37 (01):
  • [30] A bias-corrected precipitation climatology for China
    Ye, BS
    Yang, DQ
    Ding, YJ
    Han, TD
    Koike, T
    [J]. JOURNAL OF HYDROMETEOROLOGY, 2004, 5 (06) : 1147 - 1160