Some exactly solvable and tunable frustrated spin models

被引:0
|
作者
Caravelli, F. [1 ]
机构
[1] Los Alamos Natl Lab, Theoret Div T4, Los Alamos, NM 87545 USA
关键词
Spin ice; Frustration; Exact solutions; ICE; COLLOQUIUM; LATTICE; TREES; GLASS;
D O I
10.1016/j.physa.2022.127007
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss three exactly solvable spin models of geometric frustration. First, we discuss a 1-parameter subfamily of the 16 vertex model, which can be mapped to a planar Ising model and solved via Fisher-Dubedat decorations. We then consider a 1-parameter family generalization of the Villain's fully frustrated model, which interpolates between Onsager's 2D Ising model and the Villain one. We then discuss spin ice models on a tree, which can be solved exactly using recursions a la Bethe.(C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Exactly solvable 1D frustrated quantum spin models
    Dmitriev, DV
    Krivnov, VY
    Ovchinnikov, AA
    [J]. ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1997, 103 (02): : 193 - 199
  • [2] Generalizations of exactly solvable quantum spin models
    Zvyagin, A. A.
    [J]. PHYSICAL REVIEW B, 2020, 101 (09)
  • [3] SOME NEW RESULTS ON EXACTLY SOLVABLE MODELS
    AUYANG, H
    HAAS, TM
    KO, LF
    PERK, JHH
    [J]. PHYSICA D, 1986, 18 (1-3): : 386 - 387
  • [4] An exactly solvable quench protocol for integrable spin models
    Das, Diptarka
    Das, Sumit R.
    Galante, Damian A.
    Myers, Robert C.
    Sengupta, Krishnendu
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2017, (11):
  • [5] An exactly solvable quench protocol for integrable spin models
    Diptarka Das
    Sumit R. Das
    Damián A. Galante
    Robert C. Myers
    Krishnendu Sengupta
    [J]. Journal of High Energy Physics, 2017
  • [6] Reflection equations and exactly solvable lattice spin models
    Behrend, RE
    Pearce, PA
    [J]. CZECHOSLOVAK JOURNAL OF PHYSICS, 1996, 46 (12) : 1179 - 1187
  • [7] EXACTLY SOLVABLE SPIN MODELS FOR QUASI-CRYSTALS
    KOREPIN, VE
    [J]. ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1987, 92 (03): : 1082 - 1089
  • [8] SOME EXACTLY SOLVABLE MODELS OF STOCHASTIC THEORY OF COAGULATION
    LUSHNIKOV, AA
    [J]. DOKLADY AKADEMII NAUK SSSR, 1977, 237 (05): : 1122 - 1125
  • [9] Systems out of equilibrium: Some exactly solvable models
    Derrida, B
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 1997, 26 (8-10) : 311 - 312
  • [10] Exactly solvable two-dimensional quantum spin models
    Dmitriev, DV
    Krivnov, VY
    Ovchinnikov, AA
    [J]. JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 1999, 88 (01) : 138 - 147