Cyclic m-isometries and Dirichlet type spaces

被引:9
|
作者
Rydhe, Eskil [1 ]
机构
[1] Univ Leeds, Sch Math, Leeds LS2 9JT, W Yorkshire, England
关键词
32A37; 46E20; 47A45; 47B37 (primary); 47A16 (secondary); TRANSFORMATIONS; SUBSPACES; THEOREM;
D O I
10.1112/jlms.12199
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider cyclic m-isometries on a complex separable Hilbert space. Such operators are characterized in terms of shifts on abstract spaces of weighted Dirichlet type. Our results resemble those of Agler and Stankus, but our model spaces are described in terms of Dirichlet integrals rather than analytic Dirichlet operators. The chosen point of view allows us to construct a variety of examples. An interesting feature among all of these is that the corresponding model spaces are contained in a certain subspace of the Hardy space H2, depending only on the order of the corresponding operator. We also demonstrate how our framework allows for the construction of unbounded m-isometries.
引用
收藏
页码:733 / 756
页数:24
相关论文
共 50 条
  • [41] Multipliers on Dirichlet Type Spaces
    Peng Yan HU Department of Mathematics. Normal College of Shenzhen University. Shenzhen. Guangdong 518060. P. R. China Ji Huai SHI Department of Mathematics. University of Science and Technology of China. Hefei. Anhui 230026
    [J]. Acta Mathematica Sinica,English Series, 2001, 17 (02) : 263 - 272
  • [42] On Multipliers of Dirichlet Type Spaces
    Guanlong Bao
    Zengjian Lou
    Ruishen Qian
    Hasi Wulan
    [J]. Complex Analysis and Operator Theory, 2015, 9 : 1701 - 1732
  • [43] Multipliers on Dirichlet Type Spaces
    Hu P.Y.
    Shi J.H.
    [J]. Acta Mathematica Sinica, 2001, 17 (2) : 263 - 272
  • [44] Cyclicity in Dirichlet type spaces
    Kellay, K.
    Le Manach, F.
    Zarrabi, M.
    [J]. COMPLEX ANALYSIS AND SPECTRAL THEORY, 2020, 743 : 181 - 193
  • [45] On Multipliers of Dirichlet Type Spaces
    Bao, Guanlong
    Lou, Zengjian
    Qian, Ruishen
    Wulan, Hasi
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2015, 9 (08) : 1701 - 1732
  • [46] Cyclic Polynomials in Dirichlet-Type Spaces in the Unit Ball of C2
    Kosinski, Lukasz
    Vavitsas, Dimitrios
    [J]. CONSTRUCTIVE APPROXIMATION, 2023, 58 (02) : 343 - 361
  • [47] (A, m)-partial isometries in semi-Hilbertian spaces
    Saddi, Adel
    Mahmoudi, Fatma
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (10): : 1640 - 1656
  • [48] Asymptotic Isometries for Lacunary Müntz Spaces and Applications
    Loïc Gaillard
    Pascal Lefèvre
    [J]. Integral Equations and Operator Theory, 2019, 91
  • [49] Nonlinear (m,∞)-isometries and (m,∞)-expansive (contractive) mappings on normed spaces
    Ayed Al-Ahmadi, Aydah Mohammed
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01):
  • [50] Superposition operators, Hardy spaces, and Dirichlet type spaces
    Galanopoulos, Petros
    Girela, Daniel
    Marquez, Maria Auxiliadora
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 463 (02) : 659 - 680