New microwave source of microdischarges in noble gases at atmospheric pressure

被引:4
|
作者
Goch, M. [1 ]
Jasinski, M. [1 ]
Zakrzewski, Z. [1 ]
Mizeraczyk, J. [1 ]
机构
[1] Polish Acad Sci, Ctr Plasma & Laser Engn, Szewalski Inst Fluid Flow Machinery, PL-80921 Gdansk, Poland
关键词
microwave microdischarges; coaxial plasma applicator;
D O I
10.1007/s10582-006-0286-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we present a simple and cheap microwave (2.45 GHz) source of microdischarges in argon or neon at atmospheric pressure. The source consisted of a cheap 2.45 GHz microwave magnetron generator and 50 Omega coaxial line terminated with a simple coaxial plasma applicator. The new microwave source of microdischarges operated stable in the form of a small plasma jet at absorbed microwave powers of 9 80 W and gas flow rates of 0.5 divided by 25 l/min. The length and diameter of plasma jets were 1.5 divided by 14 mm and 0.5 divided by 1.5 mm, respectively, depending on the kind of gas, gas flow rate and microwave power absorbed by the discharge. The temperature of the plasma jets could be changed from 30 degrees C to 1200 degrees C by changing the gas flow rate or/and absorbed microwave power. The electron density in the plasma jet was around (0.3 divided by 1.1) x 10(15) cm(-3), depending on the discharge conditions.
引用
收藏
页码:B795 / B802
页数:8
相关论文
共 50 条
  • [31] Rotating discharges in a coaxial microwave plasma source under atmospheric pressure
    Liu, Zhuang
    Zhang, Wencong
    Yu, Jie
    Wu, Li
    Huang, Kama
    [J]. JOURNAL OF APPLIED PHYSICS, 2019, 126 (11)
  • [32] Microwave resonance plasma source for surface modification technologies at atmospheric pressure
    Taube, A
    Demyashev, G
    Siores, E
    [J]. APMC 2001: ASIA-PACIFIC MICROWAVE CONFERENCE, VOLS 1-3, PROCEEDINGS, 2001, : 783 - 786
  • [33] Characterization of a novel microwave plasma sheet source operated at atmospheric pressure
    Nowakowska, Helena
    Czylkowski, Dariusz
    Hrycak, Bartosz
    Jasinski, Mariusz
    [J]. PLASMA SOURCES SCIENCE & TECHNOLOGY, 2018, 27 (08):
  • [34] Comparison of fluid and particle-in-cell simulations on atmospheric pressure helium microdischarges
    Hong, Y. J.
    Yoon, M.
    Iza, F.
    Kim, G. C.
    Lee, J. K.
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2008, 41 (24)
  • [35] The effects of dilution gas on nanoparticle growth in atmospheric-pressure acetylene microdischarges
    刘相梅
    董晓天
    李洪影
    赵书霞
    [J]. Plasma Science and Technology, 2022, 24 (10) : 121 - 128
  • [36] Argon Microwave Discharges Sustained at Atmospheric Pressure: Suppression of Plasma Filaments with Molecular Gases
    Hong, Yong Cheol
    Uhm, Han Sup
    Cho, Soon Cheon
    [J]. JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2008, 53 (06) : 3220 - 3223
  • [37] Synthesis of blue luminescent Si nanoparticles using atmospheric-pressure microdischarges
    Sankaran, RM
    Holunga, D
    Flagan, RC
    Giapis, KP
    [J]. NANO LETTERS, 2005, 5 (03) : 537 - 541
  • [38] The effects of dilution gas on nanoparticle growth in atmospheric-pressure acetylene microdischarges
    刘相梅
    董晓天
    李洪影
    赵书霞
    [J]. Plasma Science and Technology, 2022, (10) - 128
  • [39] The effects of dilution gas on nanoparticle growth in atmospheric-pressure acetylene microdischarges
    Liu, Xiangmei
    Dong, Xiaotian
    Li, Hongying
    Zhao, Shuxia
    [J]. PLASMA SCIENCE & TECHNOLOGY, 2022, 24 (10):
  • [40] New perspectives for noble gases in oceanography
    Aeschbach, Werner
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2016, 121 (08) : 6550 - 6554