Computational implementation of Cosserat continuum

被引:6
|
作者
Gomez, Juan [2 ]
Basaran, Cemal [1 ]
机构
[1] SUNY Buffalo, Elect Packaging Lab, Buffalo, NY 14260 USA
[2] Univ Eafit, Appl Mech Grp, Medellin, Colombia
关键词
strain gradient plasticity; size effect; length scale; constitutive modelling; integration algorithms; GRADIENT CRYSTAL PLASTICITY; MICRO-INDENTATION; LENGTH SCALE; MECHANICS; HARDNESS; WORK;
D O I
10.1504/IJMPT.2009.022401
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The recent trend towards miniaturisation has pushed the development of non-classical continuum mechanics theories intended to explain the behaviour of materials at small scales. In particular, a wide range of observed size dependent phenomena has been experimentally identified. Two issues arise in the numerical treatment of the theories. Firstly, in a displacement-based finite element approach the need appears for higher orders of continuity in the interpolation functions. Secondly, if non-linear-inelastic material response is expected the theories should be cast in rate form and the corresponding integration algorithms complete the implementation. In this paper we address both problems for the particular case of a Cosserat Couple Stress theory. We describe alternatives for the numerical treatment and then we extend the framework to the case of a rate independent inelastic - non-linear material behaviour. The equations are presented in its flow theory form together with integration algorithms.
引用
收藏
页码:3 / 36
页数:34
相关论文
共 50 条
  • [31] A version of Hill’s lemma for Cosserat continuum
    Xikui Li
    Qipeng Liu
    Acta Mechanica Sinica, 2009, 25 : 499 - 506
  • [32] Dynamic patterning of shear bands in Cosserat continuum
    Tejchman, J
    Wu, W
    JOURNAL OF ENGINEERING MECHANICS-ASCE, 1997, 123 (02): : 123 - 133
  • [33] ELASTIC GENERALIZED COSSERAT CONTINUUM WITH INCOMPATIBLE STRAINS
    STOJANOV.R
    JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS SECTION A-PHYSICS AND CHEMISTRY, 1969, A 73 (05): : 548 - &
  • [34] PROPAGATION OF SURFACE-WAVES IN A COSSERAT CONTINUUM
    LYALIN, AE
    PIROZHKOV, VA
    STEPANOV, RD
    SOVIET PHYSICS ACOUSTICS-USSR, 1982, 28 (06): : 494 - 495
  • [35] A VARIATIONAL APPROACH TO THE COSSERAT-LIKE CONTINUUM
    SACZUK, J
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1993, 31 (11) : 1475 - 1483
  • [36] A mixed finite element procedure of gradient Cosserat continuum for second-order computational homogenisation of granular materials
    Xikui Li
    Yuanbo Liang
    Qinglin Duan
    B.A. Schrefler
    Youyao Du
    Computational Mechanics, 2014, 54 : 1331 - 1356
  • [37] A mixed finite element procedure of gradient Cosserat continuum for second-order computational homogenisation of granular materials
    Li, Xikui
    Liang, Yuanbo
    Duan, Qinglin
    Schrefler, B. A.
    Du, Youyao
    COMPUTATIONAL MECHANICS, 2014, 54 (05) : 1331 - 1356
  • [38] Propagation of torsional waves in a linear unbounded Cosserat continuum
    Potapenko, S
    APPLIED MATHEMATICS LETTERS, 2005, 18 (08) : 935 - 940
  • [39] THEOREMS OF LINEAR ELASTOSTATIC COSSERAT CONTINUUM FOR EXTERIOR DOMAINS
    HLAVACEK, M
    KOPACKOV.M
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1970, 50 (05): : 295 - &
  • [40] An elastoplastic constitutive model based on the cosserat continuum theory
    Imatani, Shoji
    Mori, Nobusuke
    Zairyo/Journal of the Society of Materials Science, Japan, 2015, 64 (04) : 303 - 310