Akaike information criterion;
conditional AIC;
covariate shift;
linear mixed model;
small area estimation;
LINEAR MIXED MODELS;
SELECTION;
REGRESSION;
CRITERIA;
ERROR;
D O I:
10.1002/cjs.11354
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
In this study, we consider the problem of selecting explanatory variables of fixed effects in linear mixed models under covariate shift, which is when the values of covariates in the model for prediction differ from those in the model for observed data. We construct a variable selection criterion based on the conditional Akaike information introduced by Vaida & Blanchard (2005). We focus especially on covariate shift in small area estimation and demonstrate the usefulness of the proposed criterion. In addition, numerical performance is investigated through simulations, one of which is a design-based simulation using a real dataset of land prices. The Canadian Journal of Statistics 46: 316-335; 2018 (c) 2018 Statistical Society of Canada
机构:
Stat Bundesamt, Math Stat Methods & Res Data Ctr, Gustav Stresemann Ring 11, D-65189 Wiesbaden, GermanyStat Bundesamt, Math Stat Methods & Res Data Ctr, Gustav Stresemann Ring 11, D-65189 Wiesbaden, Germany
Zimmermann, Thomas
Muennich, Ralf Thomas
论文数: 0引用数: 0
h-index: 0
机构:
Univ Trier, Fac Econ 4, Econ & Social Stat Dept, Univ Ring 15, D-54286 Trier, GermanyStat Bundesamt, Math Stat Methods & Res Data Ctr, Gustav Stresemann Ring 11, D-65189 Wiesbaden, Germany