Kernel methods for manifold estimation

被引:0
|
作者
Schölkopf, B [1 ]
机构
[1] Max Planck Inst Biol Cybernet, D-72076 Tubingen, Germany
关键词
Kernel methods; support vector machines; quantile estimation;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We describe methods for estimating manifolds in high-dimensional spacs. They work by mapping the data into a reproducing kernel Hilbert space and then determining regions in terms of hyperplanes.
引用
收藏
页码:441 / 452
页数:12
相关论文
共 50 条
  • [21] Illumination Chromaticity Estimation Using Bayesian Kernel Methods
    Zhao, Xiangkun
    Yu, Jian
    Wang, Bangjun
    [J]. JOURNAL OF IMAGING SCIENCE AND TECHNOLOGY, 2013, 57 (05)
  • [22] Semi-supervised kernel methods for regression estimation
    Pozdnoukhov, Alexei
    Bengio, Samy
    [J]. 2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Vols 1-13, 2006, : 5435 - 5438
  • [23] ESTIMATION OF THE SHAPE OF THE DEMAND CURVE BY NONPARAMETRIC KERNEL METHODS
    MCMILLAN, J
    ULLAH, A
    VINOD, HD
    [J]. ADVANCES IN ECONOMETRICS AND MODELLING, 1989, 15 : 85 - 92
  • [24] Nonparametric kernel methods for curve estimation and measurement errors
    Delaigle, Aurore
    [J]. STATISTICAL CHALLENGES IN 21ST CENTURY COSMOLOGY, 2015, 10 (306): : 28 - 39
  • [25] 3D facial expression recognition using kernel methods on Riemannian manifold
    Hariri, Walid
    Tabia, Hedi
    Farah, Nadir
    Benouareth, Abdallah
    Declercq, David
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2017, 64 : 25 - 32
  • [26] Kernel methods for software effort estimationEffects of different kernel functions and bandwidths on estimation accuracy
    Ekrem Kocaguneli
    Tim Menzies
    Jacky W. Keung
    [J]. Empirical Software Engineering, 2013, 18 : 1 - 24
  • [27] Persistence Fisher Kernel: A Riemannian Manifold Kernel for Persistence Diagrams
    Le, Tam
    Yamada, Makoto
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [28] Kernel Regression on Manifold Valued Data
    Kuleshov, Alexander
    Bernstein, Alexander
    Burnaev, Evgeny
    [J]. 2018 IEEE 5TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA), 2018, : 120 - 129
  • [29] Uniform approximation of the heat kernel on a manifold
    Shamarova, Evelina
    Simas, Alexandre B.
    [J]. ARCHIV DER MATHEMATIK, 2017, 108 (05) : 485 - 494
  • [30] Uniform approximation of the heat kernel on a manifold
    Evelina Shamarova
    Alexandre B. Simas
    [J]. Archiv der Mathematik, 2017, 108 : 485 - 494